學位論文

Permanent URI for this collectionhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/73890

Browse

Search Results

Now showing 1 - 5 of 5
  • Item
    基於深度強化式學習之多目標人群導航機器人系統
    (2023) 程健倫; Cheng, Chien-Lun
    自主移動機器人(AMR)由於其多功能性,已成功引起了人們的關注,目前已廣泛應用於自動化工廠和人與機器人之共存環境,如機場和購物中心等。為了使機器人能夠在人群環境中進行導航,機器人必須具有社交意識並能夠預測行人的移動。然而,以往的方法,機器人都需要先預測行人未來軌跡,再規劃安全路徑,常會受到行人移動之高度隨機性的影響,導致計算成本增加和機器人凍結的問題。隨著深度學習的發展,許多與導航有關的研究都基於深度強化式學習,使機器人可以通過與環境的互動找到最佳策略。社交關注強化式學習(SARL)是一最先進的(state-of-the-art)方法,能夠提升機器人在人群環境中的導航能力。儘管SARL成功改善了人群環境下的導航效能,但它仍然存在幾項缺點。因此,本研究提出了一種基於深度強化學習的多目標人群導航機器人系統,藉由所提出之獎勵函數以實現多個導航目標,包括安全性、時間效率、避免碰撞和路徑平滑度等。為了解決人群環境中的導航延遲,我們也開發了一多目標雙重選擇注意力模組(MODSRL),使機器人能夠做出更有效的決策,同時減少在導航初始階段的徘迴問題。實驗結果表示,所提出的MODSRL方法在五個不同的指標上優於現有的研究,展現了在複雜人群環境中導航的強健性。
  • Item
    具機械手臂之履帶式機器人協作任務之實現
    (2023) 謝佩哲; Hsieh, Pei-Che
    目前履帶式與機械手臂的相關技術已經越來越成熟,但是大部分的研究,還是將兩者分開來分別進行探討,鮮少討論結合的應用策略,因此本文嘗試結合履帶式機器人的移動導航與機械手臂的物件抓取等功能,以實現跨樓層移動取物、多平台的溝通整合以及具交集工作環境的人機協作任務為目標,提出演算法與系統架構。本文所使用的機器人平台為自行研發裝載了五軸機械手臂的履帶型機器人,透過雷射測距儀和超音波感測器的輔助,搭配牆面校準演算法,完成自動爬梯。為實現近端定位,利用ArUco圖示輔助,引導機器人更精準地移動至目標地,接著使用TensorFlow-Lite提供的物件偵測模型,找出場景物件,並建立3D虛擬環境,再根據場景模型,計算機械手臂的路徑規劃,進行物件抓取。另外本研究透過socket自行開發可以與非機器人作業系統架構開發的機器人進行溝通的簡易方式,讓履帶機器人可以跨平台收到由另一台機器人發送的取物需求,進行跨樓層取物的任務,並透過Mediapipe提供的手勢辨識模型,讓人類使用者以簡易手勢與機器人進行簡易的任務溝通,實現具交集工作環境的人機協作任務。
  • Item
    基於人類演示學習之機械手臂自動化控制技術
    (2019) 陳境浩; Chen, Jing-Hao
    本論文主要針對具有彈性自動化的機器人發展與應用,提出了一種基於人類演示學習的機械手臂控制系統,其目的在於降低機械手臂自動化所需要的程式編譯複雜程度,以及增加多種操作功能開發的效率。硬體方面使用六軸串列式機械手臂作為實驗平台,搭配使用一台網路攝影機和一台深度攝影機蒐集影像資訊,在示教學習過程中對於人類演示動作及操作物件進行影像處理。軟體方面,經由深度攝影機偵測之人體骨架資訊,本論文透過正逆向運動學將人類演示的動作轉換成控制機械手臂的關節角度,並建立機械手臂運動控制模組。此外,基於YOLO(You only look once)演算法在多物件偵測具有快速及正確的優點,本論文使用此演算法開發操作物件偵測與辨識,在得出目標物件的類別資訊及所在位置之後,機械手臂可依照物件的種類啟動對應的運動控制模組,目標在於重現人類演示學習所示範的任務。最後,本論文經由所建置之虛擬環境和實際自動取放實驗來驗證所發展之機械手臂演示學習技術之可行性。
  • Item
    基於人機互動觀點分析科技接受模型之研究─以繁星校內線上預選系統為例
    (2011) 李子豪; Tzu-Hao Lee
    本研究以人機互動與科技接受模型建構「繁星校內線上預選系統」使用者行為的特徵模型。並探討就一般普通高中學生使用「繁星校內線上預選系統」的行為,討論人機互動、科技接受程度和使用滿意度之現況和差異性分析,並且驗證實驗假設之徑路顯著性。本研究工具有「繁星校內線上預選系統」平台以及「繁星校內線上預選系統科技接受問卷」。分別對臺灣五間一般高中學校的高三學生實測,以立意抽樣的方式進行問卷調查,有效樣本共298人。最後本研究依研究目的和實驗假設驗證所需,分別以描述性統計、獨立樣本t考驗、單因子變異數分析、皮爾森積差相關與多元迴歸進行資料分析。 資料分析結果中發現:除了「版面差異性」未達同意程度外,其它構面皆達同意程度。差異性中發現「系統操作時數」背景變項在「知覺有用」構面上,3到4小時好於2到3小時;「系統操作時數」背景變項在「行為傾向」構面上,多於6小時好於少於1小時。各構面呈現高度相關,且各構面徑路除「版面差異性」、「色彩豐富性」、「設計精緻性」對「知覺易用」及「色彩豐富性」對「知覺有用」未達顯著水準外,其它徑路皆達顯著水準,符合研究假設之正向可預測性。依據研究發現所作成之結論與建議,將提供為相關研究者與單位參考。
  • Item
    應用於智慧型手機之改良式以Kinect為主的空中手寫數字辨識
    (2014) 黃福安; Huang, Fu-An
    近幾年來人機互動研究變的非常熱門,特別是在教育、遊憩及醫療保健方面,在先前的研究當中,我們提出了一個應用於電視遙控器以Kinect為主的手寫數字辨識,然而當時的辨識率只有86.7%,這促使我們想要去改善它的辨識率,因此,在本論文中,我們提出一個多分段及縮放編碼技術,實驗結果證明,此方法可以提高辨識率至94.6%。 除此之外,我們還想擴充此系統的實用性,所以在本文中,我們還提出應用於智慧型手機之改良式以Kinect為主的空中手寫數字辨識,當使用者手上並不乾淨時,可利用此系統不用接觸手機即可撥出電話,這能有效解決生活上會遇到的問題。