學位論文

Permanent URI for this collectionhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/73890

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    基於深度強化式學習之多目標人群導航機器人系統
    (2023) 程健倫; Cheng, Chien-Lun
    自主移動機器人(AMR)由於其多功能性,已成功引起了人們的關注,目前已廣泛應用於自動化工廠和人與機器人之共存環境,如機場和購物中心等。為了使機器人能夠在人群環境中進行導航,機器人必須具有社交意識並能夠預測行人的移動。然而,以往的方法,機器人都需要先預測行人未來軌跡,再規劃安全路徑,常會受到行人移動之高度隨機性的影響,導致計算成本增加和機器人凍結的問題。隨著深度學習的發展,許多與導航有關的研究都基於深度強化式學習,使機器人可以通過與環境的互動找到最佳策略。社交關注強化式學習(SARL)是一最先進的(state-of-the-art)方法,能夠提升機器人在人群環境中的導航能力。儘管SARL成功改善了人群環境下的導航效能,但它仍然存在幾項缺點。因此,本研究提出了一種基於深度強化學習的多目標人群導航機器人系統,藉由所提出之獎勵函數以實現多個導航目標,包括安全性、時間效率、避免碰撞和路徑平滑度等。為了解決人群環境中的導航延遲,我們也開發了一多目標雙重選擇注意力模組(MODSRL),使機器人能夠做出更有效的決策,同時減少在導航初始階段的徘迴問題。實驗結果表示,所提出的MODSRL方法在五個不同的指標上優於現有的研究,展現了在複雜人群環境中導航的強健性。
  • Item
    蜂巢式網路用戶與V2X通訊共存異質性網路之功率控制與資源分配演算法
    (2021) 高漢棋; Gao, Han-Chi
    在現今資訊暴漲的時代,無線網路是由許多的物聯網和通訊裝置所組合起來,而對於基地台原本所服務的蜂巢式網路用戶來說,因為基地台所需要服務的用戶不斷的增加,導致了基地台之間嚴重的互相干擾,為此我們通過提出一個下行鏈路干擾緩解方案,在確保了蜂巢式網路用戶的前提下,也保障了系統內的其他次級用戶不受到干擾,本文中以V2X通訊代表次級用戶。本論文建立了一個有多個多輸入單輸出(MISO)小區的環境,並在其中設置了數台採用C-V2X通訊的無人車,並使用人工智慧中的強化式學習模型Deep Q-learing 結合波束成形技術,提出了一種功率調整與波束成形演算法,每個基地台都代表一個代理(Agent),並擁有獨立的神經網路,能夠根據基地台目前的環境做出適當的決策,我們的研究結果表明此演算法能夠有效保障蜂巢式網路用戶的權益(Utility),並透過波束成形技術避開無人車,從而達到降低干擾並提升系統效能的目的。