學位論文

Permanent URI for this collectionhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/73890

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    針對空拍影像物件偵測之改良型YOLOv7演算法研究
    (2024) 鍾宜修; Chung, Yi-Hsiu
    近幾年無人機的技術發展迅速,飛行距離越來越遠、體積也不斷縮小,甚至能自動飛行,因此能應用的範圍也越來越廣泛,例如交通監測、工業或自然環境巡檢等等。另外隨著人工智慧的興起,現在無人機也會結合人工智慧演算法協助其辨識影像。由於無人機所拍攝的影像內物件往往尺寸偏小,且無人機本身的運算支援有限,因此如何提升小物件的辨識效果且同時降低模型運算時所需的資源至關重要。本論文以YOLOv7為基礎模型進行改良,提升它對小物件的偵測效果且同時降低模型參數量及計算量,我們以VisDrone-DET2019資料集來驗證模型改良成效。總共修改五種方式,第一種方式是將ELAN (Efficient Layer Aggregation Network)替換成M-ELAN (Modified Efficient Layer Aggregation Network),第二種方式是在高階特徵層添加M-FLAM (Modified Feature Layer Attention Module),第三種方式是將特徵融合的結構從PANet (Path Aggregation Network)改成ResFF (Residual Feature Fusion),第四種方式是將模型內下採樣的模塊改成I-MP模塊 (Improved MaxPool Module),最後一種方式是將SPPCSPC (Spatial Pyramid Pooling Cross Stage Partial Networks)替換成GSPP(Group Spatial Pyramid Pooling)。綜合以上方法,將mAP (mean Average Precision)提升1%,同時模型參數量卻下降24.5%,模型計算量GFLOPs (Giga Floating Point of Operations)也降低13.7%。
  • Item
    基於深度學習之多連接模塊對於物件偵測的影響
    (2022) 李政霖; Li, Cheng-Lin
    在本論文中,我們提出與YOLOv5不同的加深網路模型的方法,並設計了三種適用於特定資料集的多連接模塊(Multi-Connection)。多連接模塊的主要目的是重用特徵並保留輸入特徵以供向下傳遞。我們在8個公開的資料集驗證我們的方法。我們改進了YOLOv5中的殘差塊(Residual block)。實驗結果顯示,與YOLOv5s6相比,YOLOv5s6加入多連接模塊型一在Global Wheat Head Dataset 2020上的平均精度(mAP)提高1.6%; YOLOv5s6加入多連接模塊型二在PlantDoc 資料集上的 mAP 提高2.9%;YOLOv5s6加入多連接模塊型三的mAP在PASCAL Visual Object Classes(VOC)資料集上提高了2.9%。另一方面,我們也比較了一般的傳統深化模型的方法。一般來說,加深網絡模型會提高模型的學習能力,但我們認為對於不同的資料集,採用不同的策略可以獲得更高的準確率。此外我們設計多連接模塊型四,應用在交通號誌偵測上,多連接模塊型四之一基於殘差塊做堆疊增加網路深度,來加強網路的學習能力,並加入壓縮和激勵模塊(SE block),來強化特徵圖資訊,另外透過一個額外的跳連接鼓勵特徵重用。多連接模塊型四之二,主要是將多連接模塊型四之一的通道減半,來減少模型計算量跟參數量。多連接模塊型四之三我們基於多連接模塊型四之二多增加一個3乘3的卷積提升模型學習能力。我們選擇TT100K資料集來訓練模型,我們也收集了臺灣交通號誌當作客製化資料集,去驗證我們的方法,目的是要設計出一個高效性能的模塊,所以設計出多連接模塊型四之三。在TT100K資料集中多連接模塊型四之三獲得最好的表現,與YOLOv5s6相比計算量僅增加了11%,mAP提升了3.2%,犧牲一點計算量換來模型準確率有感的提升,此外我們也在其他公開的資料集驗證我們的方法,多連接模塊型四之三的表現也是非常有效益的。