學位論文
Permanent URI for this collectionhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/73890
Browse
4 results
Search Results
Item 毫米波之寬頻可變增益放大器與功率放大器設計(2023) 陳鈞霖; Chen, Chun-Lin隨著全球進入5G通訊的時代,毫米波的研究和發展越來越重要。其中毫米波所擁有的優勢為高速傳輸速率、較寬的頻寬和較低的延遲,因此,毫米波的運用變成眾人的發展目標。本論文將分別使用90-nm互補式金屬氧化物半導體製程和65-nm互補式金屬氧化物半導體製程,來實現主頻為28 GHz的寬頻增益放大器與寬頻功率放大器。第一個電路為28 GHz寬頻增益放大器,使用兩極皆為疊接組態增加整體的增益,同時使用第一級電流控制架構和基極偏壓技術,來達成較寬高的可變增益範圍,在可變增益範圍維持的前提下,使用共振腔及相位反轉技術達到低相位差。在這顆電路中,實現27 GHz~40 GHz的頻寬,增益皆大於16 dB,可變增益範圍皆可達到6.7,而相位差則低於5度。第二個電路為28 GHz寬頻功率放大器,利用兩級串接的方法增加電路的增益,同時利用變壓器來當作匹配網路和功率結合的元件,第二級放大器採用F類來提高效率。當操作頻率為28GHz時,功率增益(Power gain)為25.588 dB,飽和輸出功率(Psat)為16.558 dBm,最大功率附加效率Peak PAE約為44.821 %,1-dB增益壓縮點之輸出功率(OP1dB)約為12.941 dBm,整體靜態電流約為15.64 mA,功率消耗為18.768 mW。Item 28GHz砷化鎵增強型pHEMT功率放大器與PIN二極體切換器設計(2021) 謝雲岳; Hsieh, Yun-Yueh第一顆電路為內具線性器之28 GHz二級功率放大器,透過傳輸線匹配網路達成輸出功率阻抗匹配、輸入共軛匹配之效果。當VG = 0.5 V時,且線性器為關閉狀態(Vctrl = 0 V)時,在頻率為28 GHz下,其功率增益(Power gain)約為21.16 dB,飽和輸出功率Psat約為24.63 dBm,1-dB增益壓縮點之輸出功率(OP1dB)約為24.01 dBm,最大功率附加效率Peak PAE約為36.41 %,而當線性器為開啟狀態((Vctrl1 = 0.35 V、Vctrl2 = 0.15 V)且頻率為28 GHz時,IMD3在-40 dBc時的輸出功率為16 dBm,整體晶片佈局面積為1 mm × 2 mm。第二顆電路為28 GHz PIN二極體切換器,採用四分之一波長線的SPDT架構。當操作頻率為28 GHz且VON為-4 V、VOFF為1.3 V時, 插入損耗約為2.15 dB,輸入輸出反射損耗(S11、S22)分別為14.07 dB與9.92 dB,0.1-dB增益壓縮點之輸入功率(IP0.1dB)約為17 dBm,整體晶片佈局面積為1 mm × 1 mm。Item 應用於77 GHz汽車防撞雷達系統之毫米波積體電路設計(2012) 林繼揚本論文主要針對77 GHz汽車防撞雷達微波CMOS射頻前端RFICs以及毫米波電路設計研究討論,晶片製作透過國家晶片中心提供的標準TSMC CMOS 90nm製程,內容分為兩個部分,第一個部分為介紹毫米波汽車防撞雷達研究背景,第二部分為毫米波CMOS RFICs之設計與量測。 論文將介紹三個電路,第一個為低雜訊放大器,此設計頻率為71至77 GHz設計上採用三級串接,第一級為共源級組態,主要考量於低雜訊之訴求,第二級與第三級將採用疊接組態,疊接組態將提供高增益,來滿足系統所需之規格,本設計考量將在疊接組態之增益以及雜訊指數,利用中間匹配電感來設計,其電感可以使疊接組態之雜訊指數降低,並可以提高增益,本論文於第三章內容將作設計考量分析,而量測結果在74 GHz時有最小雜訊指數 6.17 dB,增益高達20 dB以上,晶片面積為0.596 ╳ 0.583 mm2。第二個電路為功率放大器,此設計操作頻率為71至77 GHz,設計考量於功率為重,因此在架構上選擇較大之電晶體,且採用疊接組態提高增益,量測結果於頻率71至77 GHz增益維持在20 dB,其晶片面積大小為0.596 ╳ 0.596mm2。第三部分為混頻器,採用環型混頻器架構,系統主要於低LO功率,以及低功率消耗,供應電壓為1.2 V,操作頻率在71至77 GHz,降頻混頻器之OP1dB發生在輸入RF功率為-3 dBm時有-0.5 dBm輸出功率。Item V頻帶功率放大器與I/Q調變器設計(2013) 鍾懿威; Yi-Wei Chung本論文研製之方向為一毫米波發射機系統的子電路分析─功率放大器(Power Amplifier, PA)與I/Q調變器(I/Q Modulator),電路操作於V頻帶,使用的製程為台積電所提供的TSMC CMOS 90nm RF 1P9M標準製程。 隨著無線通訊技術的迅速發展,射頻積體電路逐漸朝著更高的頻率、資料傳輸速率、寬頻且高整合性的方向前進;無須執照的V頻段具備有達成超高速率傳輸的可行性,係一個利於本次設計研發的頻段。而CMOS製程技術具有小面積、低成本、低功耗、與高整合度等優勢,係一在毫波米頻段極具吸引力的製程技術。 於各電路的模擬設計上採用了安捷倫所提供之ADS(Advanced design system)與電磁模擬軟體SONNET,而設計的電路為功率放大器(Power Amplifier, PA)與I/Q調變器(I/Q Modulator)兩個發射機系統的前端電路,其中功率放大器(Power Amplifier, PA)於設計上採用1:2:4的三級共源極(common source, CS)設計架構,其中第一級與第二級設定為驅動級(Drive Stage),第三級為功率輸出級(Power Stage),並在第三級加入一線性器,讓功率輸出有約略6 dBm左右的線性延長現象,於60 GHz的最大輸出功率為9.72 dBm,包含測試pad的晶片面積為0.711 × 0.657 mm2。 I/Q調變器(I/Q Modulator)於設計上,由最基本的混頻原理作為切入,完成一改良式Gilbert-cell混頻器(Modified Gilbert-cell Mixer),並有效結合數學模型加以驗證一I/Q調變器(I/Q Modulator)的電路架構與模型,包含測試pad的晶片面積為0.6978×0.8126 mm2。