學位論文
Permanent URI for this collectionhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/73890
Browse
3 results
Search Results
Item 結合像素差異法與SURF之景深量測系統(2012) 蔡宗翰; Zong-Han Cai本文提出一種結合像素差異法與SURF演算法之景深量測系統。方法是使用單一相機,利用不同拍攝距離所產生的影像畫面,結合SURF演算法匹配兩張影像,接著用ICF演算法移除較差的SURF匹配點,以完成自動選擇參考點。藉由在不同拍攝距離時,目標物特徵點於影像畫面中所產生像素值的差異,實現對於目標物之距離量測,並進一步利用影像畫面中各個目標物特徵點之距離資訊,以平滑內插處理後繪製出景深圖。Item 具有高計算效率之視覺型即時定位與建圖演算法(2013) 楊誠愷; Cheng-Kai YangFastSLAM是目前解決即時定位與建圖的熱門方法。雖然FastSLAM2.0的執行速度已經比EKF-SLAM快,但是當地標越來越多的時候,FastSLAM2.0也會因為需要多次比對量測資訊與已存在粒子中之地標,造成執行速度過慢,無法達成即時處理的目標。因此,本論文提出一種新的SLAM架構,稱之為「具有高計算效率之及時定位與建圖演算法(CESLAM)」,捨棄一開始在FastSLAM2.0中利用環境資訊更新粒子位置的階段,改成跟FastSLAM1.0一樣,先用里程計資訊更新粒子,在更新完粒子資訊後,選擇跟量測資訊似然性最高的已存地標更新粒子狀態後,再更新地標位置。模擬結果顯示,我們所提出的演算法可克服多次比對而造成執行速度過慢的問題,同時也提升了定位與建圖的準確度。實驗方面,我們使用Pioneer 3-DX機器人作為移動平台,搭配Kinect感測器進行以SURF為基礎的視覺型即時定位與建圖(V-CESLAM),實驗結果證明,本方法可以即時地讓機器人在經過大幅的移動及旋轉後,依舊能定位出自己所在的位置,並成功建立出機器人周圍的環境地圖。Item 基於GPU平行計算之視覺里程計(2018) 劉申禾; Liu, Shen-Ho本論文係針對視覺里程計(Visual Odometry, VO)系統進行改良,加入地標管理、key-frame選擇機制以及攝影機定位之修正模型來提高視覺里程計的定位準確性,並利用GPU平行運算的優勢,實現一高運算效率的系統,使機器人在行走中,能夠即時地推算自身相對於初始位置的狀態。視覺里程計的改良主要是利用SURF演算法提取特徵點,並利用比對窮舉法比對當下特徵與地標, key-frame選擇機制以避免多餘的運算量,並加入地標管理機制來濾除、新增地標點,以及判斷攝影機有效解之機制來解決P3P演算法兩面解之問題,最後使用P3P及RANSAC演算法推算出攝影機位置,為解決累積誤差的問題本論文加入攝影機定位之修正模型來提升視覺里程計的定位準確性。為了達到即時性,本論文利用GPU平行運算的優勢,執行SURF演算法並搭配比對窮舉法找出定位之特徵點、以及針對P3P以及RANSAC適合之架構進行設計,並利用異質運算,亦即CPU搭配GPU,將整個VO系統實現在TX2嵌入式系統上,因此,整體運算的效率得以大幅提升。實驗結果顯示,相較於只有使用CPU運算速度而言,異質運算在整體的效能提升了約80~90倍之多,顯示本論文基於GPU平行計算之視覺里程計可提供一個低成本、低功耗、可攜性、高效能且即時性之視覺里程計系統,達到即時視覺里程計之目的。