學位論文

Permanent URI for this collectionhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/73890

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    改良深度學習的人形機器人於高動態雜訊之視覺定位
    (2024) 隋嘉銘; Sue, Chia-Ming
    一些基於相機或其他技術的視覺 SLAM 方法已經被提出。 光學感測器來導航和了解其環境。例如, ORB-SLAM 是一個完 整的 SLAM 系統,包括視覺里程計、追蹤和定位 ORB-SLAM 僅 依賴使用單目視攝影機進行特徵偵測,但在與人形機器人一起工 作時,會出現嚴重的問題晃動模糊問題。深度學習已被證明對於穩健且即時的單眼影像重新定位是有 效的。視覺定位的深度學習是基於卷積神經網路來學習 6-DoF 姿 勢。 它對於複雜的照明和運動條件更加穩健。然而,深度學習的 問題是視覺定位方法的一個缺點是它們需要大量的資料集和對這 些資料集的準確標記。本文也提出了標記視覺定位資料和自動辨識的方法用於訓練 視覺定位的資料集。我們的標籤為基於 2D 平面( x 軸、 y 軸、 方向)的姿勢。最後,就結果而言可見,深度學習方法確實可以 解決運動模糊的問題。比較與我們以往的系統相比,視覺定位方 法減少了最大誤差率 31.73% ,平均錯誤率減少了 55.18% 。
  • Item
    基於GPU平行計算之視覺里程計
    (2018) 劉申禾; Liu, Shen-Ho
    本論文係針對視覺里程計(Visual Odometry, VO)系統進行改良,加入地標管理、key-frame選擇機制以及攝影機定位之修正模型來提高視覺里程計的定位準確性,並利用GPU平行運算的優勢,實現一高運算效率的系統,使機器人在行走中,能夠即時地推算自身相對於初始位置的狀態。視覺里程計的改良主要是利用SURF演算法提取特徵點,並利用比對窮舉法比對當下特徵與地標, key-frame選擇機制以避免多餘的運算量,並加入地標管理機制來濾除、新增地標點,以及判斷攝影機有效解之機制來解決P3P演算法兩面解之問題,最後使用P3P及RANSAC演算法推算出攝影機位置,為解決累積誤差的問題本論文加入攝影機定位之修正模型來提升視覺里程計的定位準確性。為了達到即時性,本論文利用GPU平行運算的優勢,執行SURF演算法並搭配比對窮舉法找出定位之特徵點、以及針對P3P以及RANSAC適合之架構進行設計,並利用異質運算,亦即CPU搭配GPU,將整個VO系統實現在TX2嵌入式系統上,因此,整體運算的效率得以大幅提升。實驗結果顯示,相較於只有使用CPU運算速度而言,異質運算在整體的效能提升了約80~90倍之多,顯示本論文基於GPU平行計算之視覺里程計可提供一個低成本、低功耗、可攜性、高效能且即時性之視覺里程計系統,達到即時視覺里程計之目的。