學位論文

Permanent URI for this collectionhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/73890

Browse

Search Results

Now showing 1 - 5 of 5
  • Item
    IEEE 802.11e HCCA中改善變動位元速率資料傳輸效能上鏈排程演算法之研究
    (2010) 陳業鴻; Chen, Yeh-Horng
      在IEEE 802.11e HCF (hybrid coordination function)提供以集中式輪詢(polling)機制來存取通道,稱為HCCA (HCF controlled channel access)。存取點(access point, AP)透過排程機制(scheduling),將可提供即時多媒體影音資料的服務品質(QoS)保證。為了改善上鏈傳輸變動位元速率(VBR)資料流的效能,過去有不少學者提出研究,例如ARROW排程演算法,此方法藉由回授方式將資料累積量上傳給QAP來給予精確的頻寬分配,但是因回授與分配頻寬為不同時間之動作,產生的傳送延遲將造成資料封包超過延遲時間限制而遺失。因此在本論文中,將提出一個四路輪詢排程演算法。在輪詢上鏈QSTA時,此排程器將會直接詢問緩衝器情況,並且立即給予精確的頻寬分配。同時論文中也會提出數學模型來對四路輪詢演算法和ARROW進行數值效能分析,也將藉由ns-2的實驗模擬將會看到本論文作法相較於ARROW除了在平均封包遺失率上可有效地降低,同時也能得到更大的容量並滿足多媒體影音服務品質。 而在IEEE 802.11e HCCA中,同時也需考慮系統的允入控制,藉由允入控制功能可計算出系統容量,並且給予進入連線所要求的服務品質。對於VBR類型的資料流,學者提出RVAC (Rate-Variance-envelop-based Admission Control)方法,利用Dual Token Bucket機制將進入系統的資料流塑形外,同時將統計多工增益的觀念引入HCCA。但在此方法中,並未考慮不同資料流的延遲限制差別與實際排程之情況,喪失能取得較大多工增益之效能。故我們將提出一個在Rate-Variance-envelop基礎下針對VBR之高效率動態允入控制的設計想法,將考慮各別資料流延遲特性,動態調整允入方式讓系統頻寬消耗較少、得到較大的多工。最後,由分析結果將會看到本論文作法相較於RVAC能讓整體效能改進,有效提升系統容量。
  • Item
    IEEE 802.11e HCCA 中改善傳輸效能之動態排程演算法
    (2008) 張哲瑜; Chang che-yu
    在IEEE802.11e的修正草案中,提出了根據平均的封包大小和資料產生率來計算TD (TXOP Duration)及SI (Service Interval)的演算法,但卻無法適用於VBR (variable bit rate)資料流。因此,在相關研究裡提出一個TXOP timer的機制,利用可變的輪詢週期以及可變的TD來適應VBR的資料型態。此外在TXOP timer 的基礎上,更有研究提出了利用佇列的資料量資訊QS (Queue Size)來分配準確的TXOP。雖然在TXOP配置方面可因此接近於完美,但在資料流量控管方面仍然有很大的改善空間。這是因為TXOP timer的增長速率為一平均值,因此在服務VBR封包時會導致若干封包無法在延遲範圍內接受服務。本論文將提出一個有效的排程演算法來改善TXOP timer機制,而作法主要是將QSTA (QoS Station)的服務分成輪詢及傳送兩部分。在輪詢部分將使用VBR最短的服務區間以準確的掌握VBR的封包產生時間;在傳送部分針對TXOP timer的傳輸限制提出無timer傳輸條件以及根據QS調整之變動timer傳輸條件來改善傳輸效能。經由模擬發現本論文作法可以有效的改善封包的延遲及遺失,並且能達到較高的吞吐量。
  • Item
    利用變壓器功率合成技術之5.2 GHz互補式金氧半導體功率放大器研製
    (2014) 歐陽弘文
    近幾年來,隨著無線通訊的快速發展,對於無線網路所要求的吞吐量也越來越高,且由於較低頻的2.4 GHz頻帶使用過於壅塞,導致電路設計上朝向同樣免授權免付費的5 GHz U-NII(Unlicensed National Information Infrastructure)頻帶發展,此外,對於無線收發器來說,功率放大器扮演著舉足輕重的角色,以往,為達高輸出功率與高效率,設計上會以砷化鎵(GaAs)製程為主,然而,互補式金氧半導體(CMOS)製程有著低成本及系統晶片整合的優點,故以5 GHz U-NII頻帶為重心的互補式金氧半導體功率放大器已成為現在的新趨勢,因此本論文將從電路設計的角度切入,設計及實現三個使用不同功率合成技術的5.2 GHz互補式金氧半導體功率放大器。 第一個電路為直接並聯功率合成技術之5~5.8 GHz功率放大器,將兩組功率元件直接並聯,藉此提高輸出功率,晶片佈局面積為0.875×0.705 mm2,在5.2 GHz時之量測增益(S21)為12.3 dB,並達到23.1 dBm的飽和輸出功率(Psat),18.6 dBm的1dB增益壓縮輸出功率(OP1dB)及19.8%的最高功率輔助效率(PAE),寬頻功率匹配架構的使用,使得功率放大器從5~5.8 GHz的飽和輸出功率為22.6±0.5 dBm。 第二個電路為兩路變壓器功率合成技術之5.2 GHz功率放大器,為了達到高功率輸出,利用變壓器實現功率合成,晶片佈局面積為1.2×0.6 mm2,量測增益(S21)為15.14 dB,飽和輸出功率(Psat)為25.81 dBm,1dB增益壓縮輸出功率(OP1dB)為21.42 dBm,最高功率輔助效率(PAE)為27.58%。 第三個電路為串聯結合變壓器功率合成技術之5.2 GHz功率放大器,藉由堆疊每一功率元件的電壓,進而抬高整體的輸出電壓及功率,晶片佈局面積為1.2×1 mm2,量測增益(S21)為13.37 dB,飽和輸出功率(Psat)為27.63 dBm,1dB增益壓縮輸出功率(OP1dB)為23.45 dBm,最高功率輔助效率(PAE)為19.18%。
  • Item
    5.3 GHz互補式金屬氧化物半導體功率放大器與線性化技術研究
    (2017) 林佳龍; Lin, Chia-Lung
    本論文研製之三個5.3 GHz功率放大器分別利用變壓器功率合成技術、電流合成變壓器技術與內建線性器技術來設計,並實現於標準0.18-μm 1P6M互補式金屬氧化物半導體製程(Standard 0.18-μm 1P6M CMOS process)中。本論文之功率放大器量測包含了S參數與連續波訊號。 第一個電路為利用變壓器功率合成技術之5.3 GHz功率放大器,透過變壓器的阻抗轉換與功率結合之能力,達成輸入共軛匹配、輸出功率阻抗匹配與高輸出功率。當功率放大器的Vg1為0.85 V時,其功率增益(Power gain)約為18.19 dB,飽和輸出功率Psat約為26.10 dBm,1-dB增益壓縮點之輸出功率OP1dB約為21.20 dBm,靜態電流約為294.60 mA,最大功率附加效率Peak PAE約為21.30 %,整體晶片佈局面積為1.17 mm × 0.64 mm。 第二個電路為利用電流合成變壓器技術之5.3 GHz功率放大器,以第一個電路為基礎,為了得到更高的輸出功率,我們透過電流合成變壓器技術將其輸出端做功率結合,並達到輸出功率提升近3 dBm的效果。當功率放大器的Vg1為0.85 V時,其功率增益(Power gain)約為16.43 dB,飽和輸出功率Psat分別約為29.43 dBm,1-dB增益壓縮點之輸出功率OP1dB約為25.44 dBm,靜態電流約為610.50 mA,最大功率附加效率Peak PAE約為23.06 %,整體晶片佈局面積為1.09 mm × 1.16 mm。 第三個電路為具內建線性器之5.3 GHz功率放大器,以第二個電路為基礎,在其輸入端掛接一疊接組態線性器,並透過改變線性器之控制電壓Vctrl而達到控制功率放大器之線性度改善的程度。當功率放大器的Vg1為0.85 V且線性器開啟時,功率增益約14.04 dB,飽和輸出功率Psat約為28.66 dBm,1-dB增益壓縮點之輸出功率OP1dB約為25.11 dBm,最大功率附加效率Peak PAE約為21.00 %,三階交互調變失真IMD3在輸出功率約為19.45 dBm以前皆可抑制在-40 dBc左右,整體晶片佈局面積為1.09 mm × 1.16 mm。
  • Item
    5.2 GHz互補式金屬氧化物半導體功率放大器與線性化技術研究
    (2016) 許敬易; Hsu, Chin-Yi
    本論文研製之三個5.2 GHz功率放大器分別利用變壓器功率合成技術、電流合成變壓器技術與內建線性器技術來設計,並實現於標準0.18-μm 1P6M互補式金屬氧化物半導體製程(Standard 0.18-μm 1P6M CMOS process)中。本論文之功率放大器量測包含了S參數、連續波訊號與數位調變訊號,其中量測數位調變之特性時所打入的訊號為IEEE 802.11a WLAN之OFDM 54 Mbps 64-QAM Modulated Signal。 第一個電路為利用變壓器功率合成技術之5.2 GHz功率放大器,透過變壓器的阻抗轉換與功率結合之能力,達成輸入共軛匹配、輸出功率阻抗匹配與高輸出功率。當功率放大器的VG1分別為0.85 V與1.0 V時,其功率增益(Power gain)分別約為16.59 dB與16.27 dB,飽和輸出功率Psat分別約為24.9 dBm與24.79 dBm,1-dB增益壓縮點之輸出功率OP1dB分別約為20.3 dBm與18 dBm,靜態電流分別為218.35 mA與334.91 mA,最大功率附加效率Peak PAE分別約為28.37 %與26.46 %,整體晶片佈局面積為1.2 mm × 0.6 mm。 第二個電路為利用電流合成變壓器技術之5.2 GHz功率放大器,以利用變壓器功率合成技術之5.2 GHz功率放大器為基礎,為了得到更高的輸出功率,本電路透過電流合成變壓器技術將其輸出端做功率結合,並達到輸出功率提升近3 dBm的效果。當功率放大器的VG1分別為0.85 V與1.0 V時,其功率增益(Power gain)分別約為14.29 dB與13.48 dB,飽和輸出功率Psat分別約為27.59 dBm與27.49 dBm,1-dB增益壓縮點之輸出功率OP1dB分別約為21.43 dBm與17.96 dBm,靜態電流分別約為457.9 mA與666.61 mA,最大功率附加效率Peak PAE分別約為20.18 %與18.83 %,整體晶片佈局面積為1.2 mm × 1.15 mm。 第三個電路為具內建線性器之5.2 GHz功率放大器,以利用電流合成變壓器技術之5.2 GHz功率放大器為基礎,在其輸入端掛接一疊接組態線性器,並透過改變線性器之控制電壓Vctrl而達到控制功率放大器之線性度改善的程度。當功率放大器的VG1為1.0 V且線性器開啟時,功率增益約8.74 dB,飽和輸出功率Psat約為25.01 dBm,1-dB增益壓縮點之輸出功率OP1dB約為22 dBm,最大功率附加效率Peak PAE約為9.92 %,三階交互調變失真IMD3在輸出功率約為18 dBm以前皆可抑制在35 dBc左右,誤差向量振幅EVM在輸出功率約為16 dBm以前皆可抑制在2 %左右,當誤差向量振幅EVM約為5.6 %時所操作之輸出功率約為19 dBm,整體晶片佈局面積為1.2 mm × 1.17 mm。