學位論文

Permanent URI for this collectionhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/73890

Browse

Search Results

Now showing 1 - 8 of 8
  • Item
    利用變壓器功率合成技術之5.2 GHz互補式金氧半導體功率放大器研製
    (2014) 歐陽弘文
    近幾年來,隨著無線通訊的快速發展,對於無線網路所要求的吞吐量也越來越高,且由於較低頻的2.4 GHz頻帶使用過於壅塞,導致電路設計上朝向同樣免授權免付費的5 GHz U-NII(Unlicensed National Information Infrastructure)頻帶發展,此外,對於無線收發器來說,功率放大器扮演著舉足輕重的角色,以往,為達高輸出功率與高效率,設計上會以砷化鎵(GaAs)製程為主,然而,互補式金氧半導體(CMOS)製程有著低成本及系統晶片整合的優點,故以5 GHz U-NII頻帶為重心的互補式金氧半導體功率放大器已成為現在的新趨勢,因此本論文將從電路設計的角度切入,設計及實現三個使用不同功率合成技術的5.2 GHz互補式金氧半導體功率放大器。 第一個電路為直接並聯功率合成技術之5~5.8 GHz功率放大器,將兩組功率元件直接並聯,藉此提高輸出功率,晶片佈局面積為0.875×0.705 mm2,在5.2 GHz時之量測增益(S21)為12.3 dB,並達到23.1 dBm的飽和輸出功率(Psat),18.6 dBm的1dB增益壓縮輸出功率(OP1dB)及19.8%的最高功率輔助效率(PAE),寬頻功率匹配架構的使用,使得功率放大器從5~5.8 GHz的飽和輸出功率為22.6±0.5 dBm。 第二個電路為兩路變壓器功率合成技術之5.2 GHz功率放大器,為了達到高功率輸出,利用變壓器實現功率合成,晶片佈局面積為1.2×0.6 mm2,量測增益(S21)為15.14 dB,飽和輸出功率(Psat)為25.81 dBm,1dB增益壓縮輸出功率(OP1dB)為21.42 dBm,最高功率輔助效率(PAE)為27.58%。 第三個電路為串聯結合變壓器功率合成技術之5.2 GHz功率放大器,藉由堆疊每一功率元件的電壓,進而抬高整體的輸出電壓及功率,晶片佈局面積為1.2×1 mm2,量測增益(S21)為13.37 dB,飽和輸出功率(Psat)為27.63 dBm,1dB增益壓縮輸出功率(OP1dB)為23.45 dBm,最高功率輔助效率(PAE)為19.18%。
  • Item
    24 GHz與38 GHz功率放大器及線性化技術研究
    (2019) 洪傳奇; Hung, Chuan-Chi
    第一顆電路為利用直接匹配技術之38 GHz二級功率放大器,透過傳輸線匹配網路達成輸出功率阻抗匹配、輸入共軛匹配之效果。當操作頻率為38 GHz且功率放大器的VG與VDD為-0.5 V與4 V時,其功率增益(Power gain)約為15.63 dB,飽和輸出功率Psat約為20.31 dBm,1-dB增益壓縮點之輸出功率(OP1dB)約為18.9 dBm,靜態電流約為81.5 mA,最大功率附加效率Peak PAE約為23.8 %,整體晶片佈局面積為1.2 mm × 0.8 mm。 第二顆電路為內具線性器之38 GHz二級功率放大器,線性器架構採用共源極組態。當操作頻率為38 GHz且VG為-0.5 V時,在線性器開啟狀態下(Vctrl = -0.2 V),量測小訊號增益(S21)約為12.61 dB,輸入輸出反射損耗(S11、S22)分別為-7.81 dB與-13.23 dB,三階交互調變失真IMD3在-40 dBc的輸出功率約為14.12 dBm,整體晶片佈局面積為1.2 mm × 0.8 mm。 第三顆電路為內具線性器之38 GHz二級功率放大器,線性器架構採用共源極串級電阻組態。當操作頻率為38 GHz且VG為-0.5 V時,在線性器開啟狀態下(Vctrl = -0.3 V),量測小訊號增益(S21)約為12.43 dB,輸入輸出反射損耗(S11、S22)分別為-9.3 dB與-12.71 dB,三階交互調變失真IMD3在-40 dBc的輸出功率約為13.55 dBm,整體晶片佈局面積為1.2 mm × 0.8 mm。 第四顆電路為內具線性器之38 GHz二級功率放大器,線性器架構採用疊接組態。當操作頻率為38 GHz且VG為-0.5 V時,在線性器開啟狀態下(Vctrl = -0.4 V),量測小訊號增益(S21)約為11.56 dB,輸入輸出反射損耗(S11、S22)分別為-9.28 dB與-12.3 dB,三階交互調變失真IMD3在-40 dBc的輸出功率約為14.42 dBm,整體晶片佈局面積為1.2 mm × 0.8 mm。 第五顆電路為利用變壓器功率結合技術之38 GHz功率放大器,透過變壓器的功率結合與阻抗轉換特性來達成輸入共軛匹配與輸出功率匹配。當操作頻率為38 GHz且VG1為0.6 V時,功率增益(Power gain)約為15.07 dB,飽和輸出功率Psat約為19.98 dBm,1-dB增益壓縮點之輸出功率(OP1dB)約為15.05 dBm,靜態電流約為114 mA,最大功率附加效率Peak PAE約為29.42 %,整體晶片佈局面積為0.47 mm × 0.57 mm。 第六顆電路為利用變壓器電流結合技術之24 GHz功率放大器,採用二級功率放大器的方式以提升增益,接著使用變壓器電流結合技術來提高輸出功率。當操作頻率為24 GHz且VG1為1 V時,功率增益(Power gain)約為14.07 dB,飽和輸出功率Psat約為23.9 dBm,1-dB增益壓縮點之輸出功率(OP1dB)約為19.07 dBm,靜態電流約為354.06 mA,最大功率附加效率Peak PAE約為13 %,整體晶片佈局面積為0.99 mm × 0.91 mm。
  • Item
    應用於第五代行動通訊之28 GHz與38 GHz之功率放大器研究
    (2017) 林煜哲; Lin, Yu-Zhe
    第一個電路為利用變壓器功率合成技術之Ka頻帶之功率放大器,使用半圈之變壓器實現功率結合與阻抗轉換以達到節省晶片面積,在量測頻率28 GHz時,增益為10.13 dB,飽和輸出功率為21.69 dBm,OP1dB為16.48 dBm,最大功率附加效率Peak PAE為19.36 %,整體晶片佈局面積為0.29 mm2。 第二個電路為變壓器電流合成技術之Ka頻帶功率放大器,為了提升功率放大器的增益,採用二級功率放大器進行設計,再使用變壓器電流合成技術提升輸出功率,量測結果在28 GHz時增益為14.07 dB,飽和輸出功率為23.9 dBm,OP1dB為19.07 dBm,最高功率附加效率為13 %,晶片佈局面積為0.9 mm2。 第三個電路為利用直接並聯功率合成瓦級功率輸出之Ka頻帶功率放大器,為了達到高增益,透過三級放大器進行設計,並使用直接並聯功率合成提升輸出功率,量測結果在38GHz時增益為19.6 dB,飽和輸出功率為28.4 dBm,OP1dB為27.6 dBm,最高功率附加效率為22.92 %,整體晶片佈局面積為5.22 mm2。
  • Item
    C頻帶互補式金屬氧化物半導體功率放大器與線性化技術研究
    (2017) 鄭怡建; Cheng, Yi-Chien
    第一顆電路為使用變壓器功率合成技術之C頻段功率放大器,以變壓器功率合成技術完成放大器功率結合,並藉由阻抗轉換特性達成輸出與輸入之阻抗匹配。當操作頻率為5.3 GHz且VG1為0.85 V時,功率增益約16.48 dB,飽和輸出功率(Psat)約為27.69 dBm,1-dB增益壓縮點之輸出功率(OP1dB)約為22.53 dBm,最大功率附加效率(PAE)約為28.34 %。整體晶片佈局面積為1.17 mm × 0.655 mm。 第二顆電路為具內建線性器之C頻段功率放大器,線性器架構採用共閘極串級二極體組態。當操作頻率為5.3 GHz,且VG1為1 V線性器開啟時,功率增益約14.25 dB,飽和輸出功率(Psat)約為27.06 dBm,1-dB增益壓縮點之輸出功率(OP1dB)從22.48 dBm提升至26.24 dBm,最大功率附加效率(PAE)約為23.94 %,三階交互調變失真IMD3在輸出功率約為18 dBm以前皆可抑制在-40 dBc左右。整體晶片佈局面積為1.14 mm × 0.64 mm。 第三顆電路為具內建線性器之C頻段功率放大器,線性器架構採用疊階組態。當操作頻率為5.3 GHz ,且VG1為0.85 V線性器開啟時,功率增益約11.98 dB,飽和輸出功率(Psat)約為26.84 dBm,1-dB增益壓縮點之輸出功率(OP1dB)從 22.69 dBm提升至24.7 dBm,最大功率附加效率(PAE)約為22.22 %,而三階交互調變失真IMD3在輸出功率約為18.5 dBm以前皆可抑制在-40 dBc左右。整體晶片佈局面積為1.14 mm × 0.64 mm。 第四顆電路為具內建線性器之C頻段功率放大器,線性器架構採用共閘極串級電阻組態。當操作頻率為5.3 GHz ,且VG1為0.85 V線性器開啟時,功率增益約13.1 dB,飽和輸出功率(Psat)約為26.94 dBm,1-dB增益壓縮點之輸出功率(OP1dB)從20.95 dBm提升至23.81 dBm,最大功率附加效率(PAE)約為25.05 %,而三階交互調變失真IMD3在輸出功率約為18.5 dBm以前皆可抑制在-40 dBc左右。整體晶片佈局面積為1.14 mm × 0.64 mm。
  • Item
    5.3 GHz互補式金屬氧化物半導體功率放大器與線性化技術研究
    (2017) 林佳龍; Lin, Chia-Lung
    本論文研製之三個5.3 GHz功率放大器分別利用變壓器功率合成技術、電流合成變壓器技術與內建線性器技術來設計,並實現於標準0.18-μm 1P6M互補式金屬氧化物半導體製程(Standard 0.18-μm 1P6M CMOS process)中。本論文之功率放大器量測包含了S參數與連續波訊號。 第一個電路為利用變壓器功率合成技術之5.3 GHz功率放大器,透過變壓器的阻抗轉換與功率結合之能力,達成輸入共軛匹配、輸出功率阻抗匹配與高輸出功率。當功率放大器的Vg1為0.85 V時,其功率增益(Power gain)約為18.19 dB,飽和輸出功率Psat約為26.10 dBm,1-dB增益壓縮點之輸出功率OP1dB約為21.20 dBm,靜態電流約為294.60 mA,最大功率附加效率Peak PAE約為21.30 %,整體晶片佈局面積為1.17 mm × 0.64 mm。 第二個電路為利用電流合成變壓器技術之5.3 GHz功率放大器,以第一個電路為基礎,為了得到更高的輸出功率,我們透過電流合成變壓器技術將其輸出端做功率結合,並達到輸出功率提升近3 dBm的效果。當功率放大器的Vg1為0.85 V時,其功率增益(Power gain)約為16.43 dB,飽和輸出功率Psat分別約為29.43 dBm,1-dB增益壓縮點之輸出功率OP1dB約為25.44 dBm,靜態電流約為610.50 mA,最大功率附加效率Peak PAE約為23.06 %,整體晶片佈局面積為1.09 mm × 1.16 mm。 第三個電路為具內建線性器之5.3 GHz功率放大器,以第二個電路為基礎,在其輸入端掛接一疊接組態線性器,並透過改變線性器之控制電壓Vctrl而達到控制功率放大器之線性度改善的程度。當功率放大器的Vg1為0.85 V且線性器開啟時,功率增益約14.04 dB,飽和輸出功率Psat約為28.66 dBm,1-dB增益壓縮點之輸出功率OP1dB約為25.11 dBm,最大功率附加效率Peak PAE約為21.00 %,三階交互調變失真IMD3在輸出功率約為19.45 dBm以前皆可抑制在-40 dBc左右,整體晶片佈局面積為1.09 mm × 1.16 mm。
  • Item
    5.2 GHz互補式金屬氧化物半導體功率放大器與線性化技術研究
    (2016) 許敬易; Hsu, Chin-Yi
    本論文研製之三個5.2 GHz功率放大器分別利用變壓器功率合成技術、電流合成變壓器技術與內建線性器技術來設計,並實現於標準0.18-μm 1P6M互補式金屬氧化物半導體製程(Standard 0.18-μm 1P6M CMOS process)中。本論文之功率放大器量測包含了S參數、連續波訊號與數位調變訊號,其中量測數位調變之特性時所打入的訊號為IEEE 802.11a WLAN之OFDM 54 Mbps 64-QAM Modulated Signal。 第一個電路為利用變壓器功率合成技術之5.2 GHz功率放大器,透過變壓器的阻抗轉換與功率結合之能力,達成輸入共軛匹配、輸出功率阻抗匹配與高輸出功率。當功率放大器的VG1分別為0.85 V與1.0 V時,其功率增益(Power gain)分別約為16.59 dB與16.27 dB,飽和輸出功率Psat分別約為24.9 dBm與24.79 dBm,1-dB增益壓縮點之輸出功率OP1dB分別約為20.3 dBm與18 dBm,靜態電流分別為218.35 mA與334.91 mA,最大功率附加效率Peak PAE分別約為28.37 %與26.46 %,整體晶片佈局面積為1.2 mm × 0.6 mm。 第二個電路為利用電流合成變壓器技術之5.2 GHz功率放大器,以利用變壓器功率合成技術之5.2 GHz功率放大器為基礎,為了得到更高的輸出功率,本電路透過電流合成變壓器技術將其輸出端做功率結合,並達到輸出功率提升近3 dBm的效果。當功率放大器的VG1分別為0.85 V與1.0 V時,其功率增益(Power gain)分別約為14.29 dB與13.48 dB,飽和輸出功率Psat分別約為27.59 dBm與27.49 dBm,1-dB增益壓縮點之輸出功率OP1dB分別約為21.43 dBm與17.96 dBm,靜態電流分別約為457.9 mA與666.61 mA,最大功率附加效率Peak PAE分別約為20.18 %與18.83 %,整體晶片佈局面積為1.2 mm × 1.15 mm。 第三個電路為具內建線性器之5.2 GHz功率放大器,以利用電流合成變壓器技術之5.2 GHz功率放大器為基礎,在其輸入端掛接一疊接組態線性器,並透過改變線性器之控制電壓Vctrl而達到控制功率放大器之線性度改善的程度。當功率放大器的VG1為1.0 V且線性器開啟時,功率增益約8.74 dB,飽和輸出功率Psat約為25.01 dBm,1-dB增益壓縮點之輸出功率OP1dB約為22 dBm,最大功率附加效率Peak PAE約為9.92 %,三階交互調變失真IMD3在輸出功率約為18 dBm以前皆可抑制在35 dBc左右,誤差向量振幅EVM在輸出功率約為16 dBm以前皆可抑制在2 %左右,當誤差向量振幅EVM約為5.6 %時所操作之輸出功率約為19 dBm,整體晶片佈局面積為1.2 mm × 1.17 mm。
  • Item
    K頻帶互補式金氧半功率放大器設計
    (2015) 劉家凱; Liu, Chia-Kai
    第一個電路為變壓器功率結合技術之K頻帶功率放大器,採用半圈變壓器 (Half-turn Transformer)實現功率結合與阻抗轉換以達到節省面積,量測結果在23.5 GHz時,增益為12 dB,飽和輸出功率(P_sat)為22.5 dBm,1dB增益壓縮輸出功率(OP_1dB)為18.1 dBm,最高功率輔助效率(PAE)為21.8%,晶片佈局面積為0.29 mm^2。 第二個電路為變壓器電流結合技術之K頻帶功率放大器,延續第一個設計之功率放大器,運用變壓器電流結合技術(Current Combining Transformer)來提升輸出功率,將功率放大單元直接並聯在進行匹配,而為了要提高增益,採用兩級功率放大器進行設計,量測結果在23 GHz時,增益為19.5 dB,飽和輸出功率(P_sat)為24.9 dBm,1 dB增益壓縮輸出功率(OP_1dB)為20.6 dBm,最高功率輔助效率(PAE)為17.0%,晶片佈局面積為0.97 mm^2。
  • Item
    X頻帶互補式金氧半功率放大器設計與實現
    (2015) 黃望龍; Huang, Wang-Lung
    對於射頻收發器系統來說,功率放大器扮演著相當重要的角色,為了達到高輸出功率與高效率,現今,功率放大器的設計以砷化鎵製程(GaAs process)為主。近年來隨著CMOS的進步,射頻電路大部份已經成功整合至CMOS 製程當中,且CMOS具有低功率消耗、低成本、高整合度的優勢,因此本論文將設計及實現三個使用不同功率合成技術的X頻帶互補式金氧半功率放大器。 第一個電路為變壓器功率合成技術之X頻段功率放大器,藉由變壓器實現功率合成而達到較高的輸出功率,量測增益("S" _"21" )為14.189 dB,飽和輸出功率("P" _"sat" )為24.74 dBm,1dB增益壓縮輸出功率(〖"OP" 〗_"1dB" )為16.63 dBm,最高功率附加效率(PAE)為19.9 %,晶片佈局面積為0.56 mm^2。 第二個電路為串聯結合變壓器功率合成技術之X頻段功率放大器,藉由堆疊每一功率元件的電壓,進而抬高整體的輸出電壓及功率,量測增益("S" _"21" )為13.08 dB,飽和輸出功率("P" _"sat" )為26.3 dBm,1dB增益壓縮輸出功率(〖"OP" 〗_"1dB" )為23.3 dBm,最高功率附加效率(PAE)為12.6 %,晶片佈局面積為1.08 mm^2,。 第三個電路為基於變壓器的電流合成技術之X頻段功率放大器,將兩組功率放大器元件直接並聯,藉此提高輸出功率,量測增益("S" _"21" )為13.4 dB,並達到27.3 dBm的飽和輸出功率("P" _"sat" ),23.84 dBm的1dB增益壓縮輸出功率(〖"OP" 〗_"1dB" )及19 %的最高功率附加效率(PAE) ,晶片佈局面積為1.27 mm^2。