學位論文
Permanent URI for this collectionhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/73890
Browse
2 results
Search Results
Item 疊代推進生成對抗網路用於陰影去除(2022) 吳建霖; Wu, Chien-Lin隨著科技的高速發展,深度學習在工業、軍事、民生科技處處都有大量的應用,現今運用在影像處理上的深度學習技術不斷進步,影像的去除如影像除霧、去反光、去陰影等都是電腦視覺領域中具挑戰性的任務。本論文研究目的為針對影像陰影去除提出了迭代推進生成對抗網路,首先我們輸入陰影圖藉由兩個生成器網路分別生成出無陰影的圖及殘差陰影圖,將兩者合成得到陰影圖,與輸入進行比對,最後將合成的圖再次輸入至網路重複上述步驟直到收斂,透過迭代推進的方式提升陰影移除的效果。此外為了使結果更加優異,我們的生成器網路加入了注意力機制,讓模型更專注於影子的部分,以及長短期記憶,使我們在長序列訓練過程中有更好的表現,最後是修復網路,以進一步改善生成的結果。我們與傳統方法以及近年來基於深度學習所提出的陰影去除方法比較,實驗結果表明本論文所提出的迭代推進方法有更優異的結果。Item 以適應性門檻值為基礎應用於物件偵測之 強化切割演算法(2011) 陳俊廷; Chun-Ting Chen物件偵測演算法是應用於智慧型影像系統中的基礎研究,尤其大量被用於智慧型監控系統與智慧型傳輸系統上,目的在於透過有效的偵測物件,使其資訊能夠提供給物件追蹤或辨識等相關應用,提升系統之效能,一般而言,大部分的研究常使用背景相減法,利用畫面之間的差異來擷取物件,而這樣的方式通常需要訂定門檻值將影像中的資訊分類,可是在傳統的作法中,此門檻值通常為定值,所以常需要因為測試環境的不同而重新定義,此外,陰影成份也是一項影響物件偵測演算法準確率的因素之ㄧ,所以在將影像資訊分類後,必須再透過陰影去除相關之演算法,將陰影成份去除以取出正確的物件資訊,所以在本論文中,我們提出一個根據陰影成份的特性分析,以像素點為基礎,個別定義其適應性之門檻值應用於物件偵測之演算法,使物件切割與陰影去除的動作,只要透過一個步驟的強化切割演算法,便能夠即時處理並準確的偵測物件,並且能夠將陰影成份的干擾降到最低,使偵測出來的物件資訊能夠更加的與實際物件吻合,實驗結果顯示,即使是在室內、戶外或是雨天的環境下,透過我們所提出的方法也都能夠快速並有效的偵測物件。