學位論文

Permanent URI for this collectionhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/73898

Browse

Search Results

Now showing 1 - 1 of 1
  • Item
    應用深度學習演算法之海報文字區域檢測實驗
    (2022) 盧聖侃; Lu, Sheng-Kan
    近年來,數位化的廣泛應用也促使了互聯網的發展。伴隨著互聯網技術日新月異,大量的社交媒體和其他應用程式不斷推陳出新,數位圖像已然成為社會中一種主要的資訊獲取來源。在當今資訊量爆炸的社會裡,海報作為生活中最常見的資訊傳達媒介,成為生活中處處可見的藝術表現方式並充斥在現代人的生活當中。若能提出一個檢測方法來辨識海報中的文字區域,不僅能提取海報文字區域作為後續分析的資訊,也能使海報在網路中的更容易被使用者檢索。隨著深度學習的興起,越來越多研究者利用深度學習來完成影像分析及物件檢測。而其中,Mask R-CNN 與 Yolov4 分別代表著 two-stage 與 one-stage 的目標檢測方法,無論是在物件的瑕疵檢測、人臉的偵測、交通路況的偵測等領域都有很好的研究結果。然而,以上大多都是檢測自然場景物件,較少應用在平面設計的領域之中。基此,為了提取海報圖像的文字區域,本研究將訓練 Mask R-CNN 與Yolov4 兩個檢測方法,分別來對海報圖像文本進行檢測。實驗結果顯示,Mask R-CNN檢測文字區域的 mAP50 可達 79.0%;Yolov4 檢測文字區域的 mAP50 也高達 85.1%。意味著兩個目標檢測方法都可在海報版面中,定位出海報中文字區域,提供未來作為文字辨識的數據。而對比 Mask R-CNN 與 Yolov4 兩種演算法的輸出結果後,發現 Yolov4 可以更準確地檢測文字區域,並且較不受海報因色彩、文字大小、文字間隔等設計因素影響到檢測結果。