學位論文
Permanent URI for this collectionhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/73898
Browse
2 results
Search Results
Item 花語之色彩意象應用於色彩建議與分析(2022) 林昭伶; Lin, Chao-Ling本研究所側重分析的焦點以日本學者小林重順建立色彩意象座標(Color Image Scale)與色彩意象詞彙資料庫(Color Image Word Database),讓情緒與色彩或色彩組合標準化、數值化,以奠定學理討論基礎,其利用語意差異法度量色彩及意象的關聯,與日本色彩與設計研究所(Nippon Color and Design Research Institute, NCD)合作開發色彩意象座標。透過自然語言處理(Natural Language Processing, NLP)技術將一般口語化的表達轉換至專業的一個或多個設計參數的辨識,用於人工智慧(Artificial Intelligence, AI)深度學習(Deep Learning)訓練出符合大數據內容呈現趨勢優化的色彩建議的方法,提出具體建議。透過設計3組實驗「多意象色彩調和演算法」、「色彩意象抽取演算法」、「花卉圖片重點色彩擷取」,進行提取3色色彩組合當作已知色,實作於「色彩建議演算法」輸出建議色,利用網路問卷調查分析滿意度,結果顯示色彩建議後的5色色彩組合的滿意度平均數都比4色色彩組合高。本研究的主題花語之色彩意象應用於色彩建議後的4色、5色色彩組合的滿意度平均數均達3分以上具有正面的評價。另外,本研究觀察審美度方程式M=O/C,花卉圖片重點色彩應用於色彩建議後的4色、5色色彩組合,都有100%符合M>0.5,發現應是花的顏色色相大多較為相近,產生對應到的數值不會差太大的現象,在曼賽爾色彩系統中如果O與C的落差不夠大,計算得到的數據就不會差太大,進而發現當色彩色相都較為相近時只採用審美度來進行評量色彩調和度是不夠的。 花語被加以利用於色彩意象的表現,輔助設計半自動化色彩建議方法,產生具有代表性或獨特性的色票,未來得以應用於印刷與設計產業中,解決一般非專業人員色彩運用能力不足的困境。COVID-19疫情觸動數位轉型契機,迫切需要大量的資訊傳遞、搜尋與雲端儲存及大數據的使用。科技的進步讓科技推動模式逐漸由技術轉為需求導向(陳聖智,2021),色彩建議方法的效能與創新應用的可行性,導入人工智慧概念,無須透過漫長歲月經驗累積養成,輔助更多有設計需求但能力不足的人,即時性設計因應少量多樣、個人化、個性化的趨勢設計潮流,亦是本研究主要課題以供後續相關研究與應用之參考。Item 運用感知形容詞中文字型推薦之設計與分析(2020) 林佳璇; LIN, JIA-XUAN人工智慧設計在傳播與相關設計領域已經逐漸受到關注,利用人工智慧、機器學習、自然語言處理技術所建構的設計代理人與自動化高速設計系統開始在一些設計與電商平台上扮演非常重要的角色。字型推薦方法的開發可為未來自動化設計提供技術基礎,有助於即時化、客製化、低成本、極大量的新形態設計趨勢需求。本研究設計一個運用感知形容詞中文字型推薦方法,以詞嵌入技術配合所收集23個特定感知形容詞的隱喻詞彙開發出短文字語句之情感分類器,使得設計內容的文字能自動運算出最符合該輸入語句的情感表達結果,之後再利用感知形容詞與字型的對應關係,最後得出該文字語句字型運用的推薦建議,並評估此字型推薦方法的有效性。 研究結果顯示,運用感知形容詞中文字型推薦方法設計中,感知形容抽取演算法輸出結果與受測者對文句語意的理解較為相符,大部分中文字型指派與文字語意的匹配呈度高,但系統輸出的第一名字型與隨機字型之間對語意的匹配度影響較小。綜上所述,本研究所設計之推薦方法具有很高的可行性,但是仍有一定程度的改進空間。