理學院

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/3

學院概況

理學院設有數學系、物理學系、化學系、生命科學系、地球科學系、資訊工程學系6個系(均含學士、碩士及博士課程),及科學教育研究所、環境教育研究所、光電科技研究所及海洋環境科技就所4個獨立研究所,另設有生物多樣性國際研究生博士學位學程。全學院專任教師約180人,陣容十分堅強,無論師資、學術長現、社會貢獻與影響力均居全國之首。

特色

理學院位在國立臺灣師範大學分部校區內,座落於臺北市公館,佔地約10公頃,是個小而美的校園,內含國際會議廳、圖書館、實驗室、天文臺等完善設施。

理學院創院已逾六十年,在此堅固基礎上,理學院不僅在基礎科學上有豐碩的表現,更在臺灣許多研究中獨占鰲頭,曾孕育出五位中研院院士。近年來,更致力於跨領域研究,並在應用科技上加強與業界合作,院內教師每年均取得多項專利,所開發之商品廣泛應用於醫、藥、化妝品、食品加工業、農業、環保、資訊、教育產業及日常生活中。

在科學教育研究上,臺灣師大理學院之排名更高居世界第一,此外更有獨步全臺的科學教育中心,該中心就中學科學課程、科學教與學等方面從事研究與推廣服務;是全國人力最充足,設備最完善,具有良好服務品質的中心。

在理學院紮實、多元的研究基礎下,學生可依其性向、興趣做出寬廣之選擇,無論對其未來進入學術研究領域、教育界或工業界工作,均是絕佳選擇。

Browse

Search Results

Now showing 1 - 10 of 16
  • Item
    鎳在銀/矽(111)-(√3 × √3 )表面上聚集分布和熱力衍化的研究
    (2011) 張國偉
    蒸鍍鎳原子於銀/矽(111)-(√3×√3)表面上,變化其鍍量和溫度,並藉由STM觀測鎳原子的聚集分布和熱力衍化。固定溫度於室溫改變鍍量,鎳原子會形成鎳原子團,若鍍量大於0.2 ML,部分鎳原子團會合併形成鎳島,且鎳原子團與鎳島均隨鍍量上升而逐漸變大。 固定鍍量改變溫度,含鎳原子團在300℃以下會逐漸向銀島邊緣聚集,且於300℃逐漸形成外型為幾何形的Ni2Si-δ(2×1)島,並於200~300℃有往塊材擴散的行為,由銀島交界處鑽入裡層,使得表面鎳鍍量下降,於400℃銀原子開始退吸附,使原先被銀覆蓋住的鎳矽化合物變成NiSi2再度露出表面。 升溫至600、700℃時,銀原子已經完全退吸附,而鎳原子仍在矽(111)表面上,其表面形貌主要為,矽(111)-(7×7)、原子團、鎳矽1×1-RC和NiSi2(B)(鍍量超過1.4 ML才會出現),並藉由STS得知,鎳矽1×1-RC的電性頗為類似N型半導體,而NiSi2(B)類似於金屬電性。
  • Item
    抑制矽化物生成的低溫鐵薄膜之成長與磁性研究
    (2011) 涂文廷; Wen-Tin Tu
    相較於室溫成長,低溫下成長於矽基板上的鐵薄膜成功的減少了矽和鐵介面間的矽化物產生。在鐵矽介面間,5到15層低溫成長的鐵薄膜,在350K下都能夠維持穩定的狀態。同時,低溫成長的鐵薄膜其表面相當的平整,粗糙度約在0.4到0.6個奈米間。因此,低溫的鐵薄膜被用來做為一介面層,接續在室溫下繼續蒸鍍鐵薄膜。我們利用磁異相能的單一磁矩模型,來模擬矯頑場的變化,並推論和討論表面及體積異相能。
  • Item
    矽奈米線場效電晶體
    (2010) 李彥霆; Yan-Ting Li
    迄今,矽奈米線(SiNWs)可使用不同的方法製作,例如雷射濺鍍、熱蒸鍍和微影技術。然而,由這些方法所製成之矽奈米線大多為非固定位置與方向或是由於自組式成長而形匯聚及扭轉等情況,限制了在奈米電子學之應用。 而本研究中我們結合由上而下之半導體製程技術並結合局部的矽氧化作用之技術製作直徑5 ~ 20奈米,長度近似於400奈米之多晶矽奈米線。局部矽氧化作用乃利用氮化矽於矽墊層區域防止矽氧化,並於介於源、汲極間電子傳輸之通道之矽線開窗以進行局部的矽氧化作用以形成矽奈米線。 此外,利用濕式蝕刻使多晶矽奈米線形成獨立懸掛橋樑結構,並定義多晶矽閘極,製作出全環繞式(gate all around;GAA)閘極奈米線場效電晶體。隨著元件之完成,以穿透式電子顯微鏡(TEM)確認元件之結構,並做基本電性之探討。
  • Item
    製作反鐵磁性的氧化鈷在鈷/矽(111)超薄膜上之交換偏移作用研究
    (2009) 莊家翔; Chiashain Chuang
    交換偏移作用在半導體上的想法已經被初步的完成。為了完成這個想法,鐵磁性的元素-鈷,被覆蓋於半導體中最具代表性的元素-矽晶面上。研究交換偏移作用在半導體上的第一步驟是製作反鐵磁性的超薄氧化鈷膜。在此文獻中,有三種方法被用在製作反鐵磁性的超薄氧化鈷膜。它們分別是「在常溫下以氧壓下鍍鈷的方式製作超薄反鐵磁氧化鈷膜於11 ML 鈷/矽(111)上」、「在常溫下曝氧於鈷/矽(111)上」和「在常溫下以氧壓下鍍鈷的方式製作超薄反鐵磁氧化鈷膜於已曝氧4000 L達飽和的11 ML 鈷/矽(111)上」。 在第一個方法中,不論是縱向和垂直方向的磁光柯爾效應,其阻隔溫度和交換偏向場都不遵守有限尺寸效應。這實驗結果顯示超薄反鐵磁性的氧化鈷膜或超薄鐵磁性的鈷膜中,可能有某種形式的奈米結構。 在第二個方法中,我們得到一個指數上升的方程式,藉由這個方程式我們可以預測鈷矽化合物(CoSi2)的混合層數。在5在15的鈷原子層中,從AES強度氧鈷比飽和的強度變化換轉成氧的吸附層數,我們可以用一個指數上升的方程式曲線來近似這些數據。這個方程式可寫成IO = (IO)0 {exp[(tCo-t0)/D]-1},其中(IO)0 = 0.41是氧的吸附比;t0 = 2.16 ML是鈷矽化合物(CoSi2)的混合層數;D = 6.98 ML是氧的平均擴散深度。 在最後的方法中,介於鐵磁層鈷與反鐵層氧化鈷介面的氧中,形成氧阻隔層,它會降低鐵磁層鈷與反鐵層氧化鈷的交換作用。另一方面此氧阻隔層也降低反鐵層氧化鈷的形成效率。 吾人提出三項重要的建議,它們分別是「零場冷卻過程」、「交換偏移磁性相圖」和「研究超薄反鐵磁層氧化鈷的表面形貌」。未來這三項建議若被實驗執行時,這可使我們交換偏移作用在半導體上的初步研究提升為交換偏移作用在半導體上的研究基石。
  • Item
    超高真空系統架設與鐵在低溫下成長於金與矽基板之研究
    (2009) 林彥穎; Lin Yen-Ying
    我們建立了一部多功能超高真空系統,其背景壓力約在3x10^-10托耳。而用電子穿隧掃描顯微鏡來觀測樣品所得到的表面形貌圖片可以藉由石墨和單晶矽基板來校正。在180K將鐵成長於金(111)表面的系統中,發現有雙生的核成長在金(111)重構表面fcc結構的紐節處,這和在90K曝氙成長的結果非常不一樣。當再一次鍍膜於180K,使膜厚度達0.45個原子層後再以室溫退火處理,發現金的奈米顆粒成長呈現隨機分布。而在金(111)的面上有些區域呈現與面(111)相鄰斜面的結構,鐵在此相鄰結構上的成長和另一個相鄰面,金(788)面,的系統完全不一樣。最後,我們同時建置了磁光柯爾效應量測裝置,其最大磁場可達4300高斯。同時我們也成功的量測到鐵薄膜在矽基板平面方向的磁滯曲線。
  • Item
    氧與氧化鈷在鈷/矽(111)超薄膜上之磁性研究
    (2008) 張惟祐; Michael
    摘要 本實驗在超高真空的環境中,使用蒸鍍的方式將Co膜成長在Si (111)-7×7表面上,通入高純度之O2來研究曝氧效應對於Co/Si(111)超薄膜之影響,以歐傑電子能譜儀分析其表面成份,以低能量電子繞射儀以及反射式高能量電子繞射儀觀察其表面週期性結構,以表面磁光柯爾效應儀量測其磁性質。 在純Si (111)基板以及CoSi2介面上,O2會有弱物理吸附而不形成化合態;在鍍上Co膜後,O2吸附之效應較強,且吸附效果隨著Co膜厚成正相關。而O2的吸附作用將改變Co/Si(111)超薄膜之表面磁性層的電子組態改變,故MS、MR與其磁滯曲線角型比皆呈現下降之趨勢。此外由於O2的吸附之效應,一方面降低了有效磁性Co的層數,因而降低了HC;另一方面形成了釘紮區域(pinning sites)阻礙磁化的反轉,因而提高HC,而本系統所觀測到HC之變化為此兩種效應互相競爭的結果。 另一方面,以氧壓下鍍Co的方式製作超薄反鐵磁CoO膜於11 ML Co/Si (111)上,其易磁化軸由原本的水平膜面轉變至傾斜出膜面。且經過場冷卻至150 K可發現水平膜面與垂直膜面兩方向皆有交換偏壓的現象產生。於 CoO膜厚為20 ML時,此系統有最大水平膜面交換偏向場為258 Oe,且其阻隔溫度為200 K;而於CoO膜厚為15 ML時,此系統有最大垂直膜面交換偏向場為924 Oe,且其阻隔溫度為164 K。
  • Item
    矽在銀/矽(111)-(√3x√3)與銀/鍺(111)-(√3x√3)表面上的成長
    (2014) 謝伯宜; Hsieh, Po-I
    本實驗將矽原子蒸鍍於不同表面溫度之銀/矽(111)-(√3x√3)與銀/鍺(111)-(√3x√3)表面,並以掃描穿隧式顯微鏡(STM)觀察矽原子於兩表面的成長。在矽/銀/矽系統中,√3x√3島緣之下層發生了矽-銀交換的現象,矽原子將以Step-growth的形式自√3x√3島緣併入基底,使得上層√3x√3島面積比例上升。在矽/銀/鍺系統中,在表面上可觀察到兩種規則性結構,分別為 √3x√3島以及有序結構。√3x√3島為矽原子與下方銀原子層交換所形成之週期性島,有序結構為矽原子於表面上排列組成之單層矽結構。該有序結構依原子排列方式,可進一步區分為2x2六角結構以及矩形結構。
  • Item
    結合二碲化鈷與二氧化鈦保護層之矽微米柱異質結構應用於光催化水分解
    (2017) 林育辰; Lin, Yu-Chen
    全球每年平均能源消耗約15兆瓦,且對於能源之需求與日俱增,故各國積極開發乾淨之替代能源變得越來越重要,而有效利用太陽能進行光催化水分解為一新之展望,其可取代化石燃料,以達到無碳排放與零污染產物等特點。應用於光催化水分解之光觸媒須滿足特定條件,首先須為半導體材料,且其導電帶位置須負於氫氣之還原電位,此研究以矽為光觸媒,因其具窄能隙,故可利用大部分之可見光,為太陽能產氫能源建立新之里程碑。 此研究使用矽微米柱陣列結構作為光捕捉之利用與增加反應表面積,並減少電子擴散路徑,其藉由黃光微影製程技術與乾式蝕刻製作而成,完成之柱長與直徑分別約為10 μm和0.85 μm。然而於目前之研究領域中,矽基光電極仍有許多問題存在,大致上為光生載子動能不足與氧化物生成造成不穩定之結果。此研究利用修飾過渡金屬二硫屬化合物(transition metal dichalcogenide;TMD)為軸,以二碲化鈷(CoTe2)作為共觸媒,並使用原子層沉積(atomic layer deposition;ALD)生成二氧化鈦(TiO2)作為保護層以解決上述之問題。藉由簡易之陽離子交換反應法,以鈷離子置換前驅物亞碲酸鈉(Na2TeO3)之鈉離子,並經氫氣還原反應後得二碲化鈷。而經原子層沉積後,可於電子顯微鏡下觀察到二氧化鈦包覆於矽微米柱表面,以避免電解液與矽基材直接接觸。 於異質介面上探討能帶彎曲對稱情形,使介面能障消失,更以六甲基二矽氮烷(hexamethyldisilazane;HMDS)進行預處理,減少表面張力並對表面進行改質,可有效改善共觸媒不均勻分散於微米柱結構之情況,並可降低介面阻抗,其結果於電子顯微鏡下觀察到粒子聚集情況降低,且以X光光電子能譜分析可得矽-氧鍵之比例減少,進而改善光生載子傳輸效率,以降低載子再結合發生機率。 光電流特性則於模擬太陽光照射(100 mW/cm2)下,以標準氫電極電勢(reversible hydrogen electrode;RHE)為0 V下量測其光反應,其結果顯示於定量下30 μL共觸媒前驅物所合成之二碲化鈷具最佳光電流特性,於0 V vs. RHE下光電流可達24 mA/cm2,同時起始電位正偏移至0.17 V。而沉積二氧化鈦保護層後,進行長時間產氫量之量測,經計算後可得約80%之法拉第效率(Faradaic efficiency;ηF),且其穩定性於酸性電解液環境中可維持5小時無明顯衰減。
  • Item
    矽原子在銥(100)切面上的動態行為與交互作用
    (2016) 張琬喻; Chang, Wan-Yu
      本實驗利用場離子顯微鏡觀察吸附矽原子在銥(100)切面上的動態行為及交互作用。利用單顆吸附矽原子在不同溫度下的熱擴散運動,並配合Arrhenius plot求得擴散活化能E_d=0.91±0.02 eV。雙顆吸附矽原子在加熱到400 K以上時,彼此間的距離較低溫時的大,也間接證明在此溫度下,原子有足夠的能量去排列成有序結構。觀察雙顆吸附矽原子在銥(100)切面上的動態分布,顯示出矽原子在銥(100)切面上會位於不同佔位上(例如:四重對稱站位、橋位和上位),也表示矽原子彼此間的交互作用力大於矽原子與基底間的交互作用。雙顆吸附矽原子會在相距三個銥基底的晶格常數下處在最低的交互作用能0.086 eV。原子間的交互作用會受到基底的二維自由電子氣影響,產生Fridel oscillation的現象,藉由理論公式與實驗數據擬合,可以得到銥(100)切面上的費米波向量應該為1.35 Å。當加熱到431 K時,蒸鍍在銥(100)切面下的矽原子會發生上行運動。
  • Item
    共催化劑修飾於矽微米柱以提升光催化產氫之效率
    (2016) 楊凱智; Yang, Kai-Chih
    石化燃料快速之消耗,使可再生之替代能源更加被重視。近期以半導體材料進行光催化水分解之研究蓬勃發展,乃因光陰極產生之氫氣已被視為具發展性之替代能源。本實驗藉微影與乾蝕刻技術將矽基板蝕刻成矽微米柱結構(Si MWs),以提升光陰極之吸光率與反應面積。然而其光生載子動能偏低與表面易生成氧化物之問題,使矽無法有效進行光催化水分解反應。 故第一部分實驗以簡易化學合成法,將共催化劑鈷二硫屬化物(CoX2)修飾於矽微米柱上於廣範pH值溶液進行光催化產氫反應,CoX2降低因矽照光所產生之電子電洞對之再結合,進而提升光催化水分解之效率,並因其核-殼狀結構隔絕矽表面與氧氣之接觸,抑制矽表面生成氧化層,進而提高光陰極材料之穩定性。實驗中修飾二硫化鈷之光陰極(Si@CoS2)於酸性溶液下表現優於修飾二硒化鈷之光陰極(Si@CoSe2),乃因Si@CoS2具較大活性面積與較高之吸光率。然而,於中性與鹼性溶液之瞬態電流量測中,Si@CoS2具不穩定與過衝電流之現象產生。反觀地,Si@CoSe2穩定於廣範pH值溶液進行300分鐘反應,於鹼性溶液之計時伏安量測後,其光電流密度提升至-5.0 mA cm-2,乃因CoSe2轉為非晶相結構,使其裸露更多活性端與氫離子進行反應。 然而,因CoX2與p型矽之界面產生不適合之能帶彎曲,降低電子之傳輸效率,故於第二部分實驗選用能與p型矽產生p-n接面之共催化劑二硫化鉬(MoS2),並對MoS2摻雜過渡金屬(MMoSx;M = Fe, Co, Ni),使MoS2裸露出更多活性端。於X光繞射與拉曼圖譜發現,異金屬原子之摻雜破壞MoS2之晶格結構,呈現非晶相之結構。於酸性溶液下,修飾MoS2之光陰極(Si@MoS2)於外加偏壓為零伏下之光電流密度達到-8.41 mA cm-2,其中以摻雜鈷金屬原子之光陰極表現最佳,其光電流密度於外加偏壓為下達到-17.2 mA cm-2。藉X光吸收能譜發現,MMoSx中僅鈷與鎳金屬原子為以取代鉬原子之方式摻雜入MoS2內,其中以摻雜鈷原子之MoS2裸露出最多之活性端,於計時伏安量測亦可發現,Si@MoS2摻雜鈷原子後其法拉第常數由原本63%提升至81%。