應用於音頻之低功率高效能三角積分調變器設計與實現
dc.contributor | 郭建宏 | zh_TW |
dc.contributor | Chien-Hung Kuo | en_US |
dc.contributor.author | 施登耀 | zh_TW |
dc.contributor.author | Deng-Yao Shi | en_US |
dc.date.accessioned | 2019-09-03T10:48:26Z | |
dc.date.available | 2016-2-24 | |
dc.date.available | 2019-09-03T10:48:26Z | |
dc.date.issued | 2011 | |
dc.description.abstract | 在現今製程技術不斷的進步下,積體電路設計已進入了奈米時代,此進步不但大大的降低了電路的面積,相對上電源供應電壓也大幅的下降。高效能、低功率的晶片陸續地推陳出新,以及人們對於產品輕薄短小和電池的長時效性要求,低功率積體電路技術發展有愈來愈急迫的需要。然而,電源電壓的下降,雖可有效地節省數位電路的消耗功率,但卻反而增加類比數位轉換電路設計的困難。在許多應用當中,類比數位轉換器(Analog-to-digital converter)佔著舉足輕重的角色,而有許多種架構可以來完成。三角積分調變器(Delta Sigma Modulator)對類比電路的非理想特性並不敏感,這些特性包含元件之間的不匹配、運算放大器的增益等等。然而這些特性恰巧對低功率電路來說尤其重要。三角積分調變器這項技術基本上非常適合用來實現高解析度、高準確度、及窄頻要求的類比數位轉換器,因此在儀器、音頻及通信上的應用已相當的普遍。 在本論文中,提出了兩種新穎的架構並且實現,一是改良強健式多級雜訊頻移架構(Sturdy Multi-stage Noise Shaping, SMASH),降低運算放大器對電壓增益的需求,並結合數位前饋架構(Digital feed-forward),增加輸入動態範圍且降低失真;二為,三角積分調變器使用逐次逼近暫存式(Successive Approximation Register, SAR)類比數位轉換器,此架構可有效降低功率消耗和電路複雜度。兩架構實現所使用的製程技術分別為TSMC 90-nm 1P9M CMOS與TSMC 0.18-mm 1P6M CMOS;設計的供應電壓皆為1.2 V、頻寬為音頻應用的25 kHz;模擬結果分別達到的最大SNDR為63 dB與82 dB;電源功率消耗分別為813 mW與463 mW。 | zh_TW |
dc.description.abstract | The fabrication of integrated circuit has entered the nano-grade with the improvement of modern technology. This progress not only reduces the circuit area greatly, but also lowers the supply voltage significantly. Chips with high-performance and low-power have been proposed constantly today, the main demand of these chips nowadays is more power saving for portability. Hence, the low power technology has become a trend in modern integrated circuit designs. Although the decreasing of the supply voltage can effectively save power consumption of digital circuits, it also increases the difficulty of designing analog-to-digital converters (ADCs) circuits, which plays an important role in many applications. Fortunately, Delta-sigma modulators are insensitive to the imperfections of the analog components, including the mismatch between elements, the gain of OPAMPs, etc… which are of great influence to low-power chips. Therefore, they’re usually designed and applied for high-resolution systems such as instruments, audio devices, and communication devices. In this thesis, we propose and construct two new structures. The first one is an improved Sturdy Multi-stage Noise Shaping (SMASH) structure. Here are three key-points of SMASH: (a) it reduces the gain requirement of the operational amplifier (OPAMP) (b) analogy modulator adopting the Digital feed-forward (DFF) path (c)input dynamic range larger than conventional DSM with the distortion of modulator reduced. The second structure is a modulator using successive approximation register (SAR) ADC. This architecture reduces power consumption and simplifies circuit complexity. Two of the modulators are constructed in 90-nm 1P9M CMOS and 0.18-m 1P6M CMOS process technology, respectively. Both modulators process 25-KHz audio-band, with 63 dB and 82dB peak SNDR. Total power dissipations are 813 mW and 463 mW, respectively. | en_US |
dc.description.sponsorship | 電機工程學系 | zh_TW |
dc.identifier | GN0697750208 | |
dc.identifier.uri | http://etds.lib.ntnu.edu.tw/cgi-bin/gs32/gsweb.cgi?o=dstdcdr&s=id=%22GN0697750208%22.&%22.id.& | |
dc.identifier.uri | http://rportal.lib.ntnu.edu.tw:80/handle/20.500.12235/95802 | |
dc.language | 中文 | |
dc.subject | 類比數位轉換器 | zh_TW |
dc.subject | 三角積分調變器 | zh_TW |
dc.subject | 強健式多級雜訊頻移架構 | zh_TW |
dc.subject | 數位前饋架構 | zh_TW |
dc.subject | 逐次逼近暫存式類比數位轉換器 | zh_TW |
dc.subject | Analog-to-digital converter | en_US |
dc.subject | delta-sigma modulator | en_US |
dc.subject | Sturdy Multi-stage Noise Shaping | en_US |
dc.subject | Digital feed-forward | en_US |
dc.subject | successive approximation register ADC | en_US |
dc.title | 應用於音頻之低功率高效能三角積分調變器設計與實現 | zh_TW |
dc.title | The Design and Implementation of Low-power High-performance Delta-Sigma Modulators for Audio Application | en_US |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- n069775020801.pdf
- Size:
- 2.57 MB
- Format:
- Adobe Portable Document Format