考慮密度限制之數值區間關聯規則探勘

dc.contributor柯佳伶博士zh_TW
dc.contributor.author郭瑞男zh_TW
dc.date.accessioned2019-08-29T07:44:59Z
dc.date.available2003-06-30
dc.date.available2019-08-29T07:44:59Z
dc.date.issued2003
dc.description.abstract本論文提出一個新的數值區間關聯規則探勘方法,稱為PQAR(Partition-based Quantitative Association Rule mining)演算法,以空間分割方式先探勘出滿足相對密度限制的常見數值區間項集合,再由其產生數值區間關聯規則。PQAR方法在探勘常見數值區間項集合時除了考慮最小支持度門檻值的限制外,亦訂定相對密度的限制,避免在相同支持度門檻值要求下,找出資料分佈不集中的區間。此外,PQAR方法採用空間分割方式探勘出符合要求的最大數值區間,不但減少需要掃描資料庫的次數,使得執行時間大為縮短,亦使探勘結果中的區間個數較少,達到找出精簡而重要的數值區間關聯規則之目的。由實驗結果顯示PQAR方法在探勘具不同支持度及相對密度的常見區間項集合,都有很高的正確率。而且在相同的正確率的條件下,本論文方法也較QAR演算法的執行更有效率。zh_TW
dc.description.abstractA new approach, called PQAR (Partition-based Quantitative Association Rules mining) algorithm, is proposed in this thesis for mining quantitative association rules. This approach finds out all the frequent interval itemsets that satisfy the minimum relative density requirement based on space partitioning method, and the quantitative association rules are produced from these interval itemsets. When mining frequent interval itemsets, PQAR algorithm considers not only the minimum support as the filtering condition, but also the minimum relative density to prevent finding the intervals in which data distribution is sparse. In addition, based on space partitioning method to find out the largest intervals that meet the threshold requirements, the number of qualified intervals is reduced such that the resulting rules are significant and concise. Furthermore, because the number of times to scan database is reduced possibly in PQAR algorithm, the mining time is shorten considerably than the previous approaches. The experimental results show that, when testing data sets with various supports and relative densities setting, PQAR algorithm obtains results with high accuracy and recall in most cases. Moreover, under the same accuracy condition, PQAR algorithm takes much less time than QAR algorithm.en_US
dc.description.sponsorship資訊教育研究所zh_TW
dc.identifierG0069008040
dc.identifier.urihttp://etds.lib.ntnu.edu.tw/cgi-bin/gs32/gsweb.cgi?o=dstdcdr&s=id=%22G0069008040%22.&%22.id.&
dc.identifier.urihttp://rportal.lib.ntnu.edu.tw:80/handle/20.500.12235/92657
dc.language中文
dc.subject資料探勘zh_TW
dc.subject關聯規則zh_TW
dc.subjectdata miningen_US
dc.subjectassociation ruleen_US
dc.title考慮密度限制之數值區間關聯規則探勘zh_TW
dc.titleMining Quantitative Association Rules with Density Constrainten_US

Files

Original bundle

Now showing 1 - 5 of 5
No Thumbnail Available
Name:
804001.pdf
Size:
38.31 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
804002.pdf
Size:
49.46 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
804003.pdf
Size:
410.78 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
804004.pdf
Size:
30.72 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
804005.pdf
Size:
12.24 KB
Format:
Adobe Portable Document Format

Collections