不同阻力與不同座墊位置對自行車踩踏效率的影響
No Thumbnail Available
Date
2012
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
座墊位置明顯影響自行車的下肢踩踏,但是阻力改變後的影響仍鮮少被探究。目的:考量阻力介入的情況,以90rpm的固定節奏探討不同座墊位置對下肢踩踏的影響,從中評估最佳運動效率的座墊位置。文獻探討回顧了座墊高度的定義,調整座墊的影響,以及過去研究中的方法學差異。方法:招募11名無經歷過自行車專業訓練的大專學生(身高174.5 ± 6.1公分、體重70.8 ± 6.2公斤、年齡25.3 ± 1.3歲),經過知情同意書的閱讀後自願參與本實驗。實驗設計以2種功率 × 9種座墊位置進行,並擷取運動學、動因學、肌電圖數據,以及舒適度量表的主觀舒適感受。統計方法使用二因子重複量數變異數分析考驗阻力與座墊位置的相互影響。結果:座墊位置越低越前,下肢關節ROM會減少,踏板衝量不改變,下肢肌肉活化量會降低。舒適度量表則顯示中間座墊高度主觀最舒適。結論:90rpm、低座墊位置,有較佳的踩踏效率。
Purpose: To investigate the effect of cycling efficiency with different saddle position when resistance increased at 90 rpm. This thesis presented numerous saddle height definitions, and the difference of methodology among previous studies in literature review. Methods: Eleven college participants (height 174.5 ± 6.1 cm, weight 70.8 ± 6.2 kg, age 25.3 ± 1.3 years) joined this experiment voluntarily, riding on a bicycle simulator, which could adjust the saddle position and cycling work rate. In the experiment design with 2 work rates × 9 saddle positions, lower limb kinematic, pedal kinetic, lower limb electromyography, comfort scale data were recorded to assess the efficiency. A two-way repeated measures ANOVA was used for statistics. Results: When resistance increased, lower and more forward saddle position would lead to the decrease of lower limb joint ROM, unchanged pedal impulse, decrease of lower limb muscle activation, and the middle saddle height showed the most comfortable by comfort scale. Conclusion: This thesis found that riding with 90 rpm and lower saddle position would perform more efficiently when resistance increased.
Purpose: To investigate the effect of cycling efficiency with different saddle position when resistance increased at 90 rpm. This thesis presented numerous saddle height definitions, and the difference of methodology among previous studies in literature review. Methods: Eleven college participants (height 174.5 ± 6.1 cm, weight 70.8 ± 6.2 kg, age 25.3 ± 1.3 years) joined this experiment voluntarily, riding on a bicycle simulator, which could adjust the saddle position and cycling work rate. In the experiment design with 2 work rates × 9 saddle positions, lower limb kinematic, pedal kinetic, lower limb electromyography, comfort scale data were recorded to assess the efficiency. A two-way repeated measures ANOVA was used for statistics. Results: When resistance increased, lower and more forward saddle position would lead to the decrease of lower limb joint ROM, unchanged pedal impulse, decrease of lower limb muscle activation, and the middle saddle height showed the most comfortable by comfort scale. Conclusion: This thesis found that riding with 90 rpm and lower saddle position would perform more efficiently when resistance increased.
Description
Keywords
座墊高度, 功率, 衝量, 肌電圖, 舒適度, saddle height, work rate, impulse, electromyography, comfort