應用三維列印在生活科技課程對科技創造力的影響

No Thumbnail Available

Date

2017

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

傳統的生活科技課程大多是給予固定的操作方式進行授課,但如此施為學生將失去設計過程中的思考歷程,按部就班的製作學習亦無法真正學習解決真實生活問題的能力。研究顯示有效的生活科技課程教學方式應採用主題或專題製作的方式,建立一個供學生實作的環境,學生能基於知識原理,並根據日常生活的需求進行思考,讓學生從探索、解決問題、模擬實證、發表、討論、腦力激盪等過程中發展多種構想與解決方法。而這些能力的培養需要引介更多動手實作與科技的使用,一個好的使用工具能夠使得學生整個設計的流程更加的流暢與發揮空間,而三維印表機則為方便的科技產品輔助設計流程的進行。 本研究設計基於設計歷程之生活科技教學活動,並以切合現實生活作為主題,透過比較利用三維列印輔助教學之實驗組與利用智高積木輔助教學之控制組兩者之差異,研究對象為新北市立立某高中10年級生,探討三維列印輔助生活科技教學如何影響學生之學習,歸納資料分析結果如下: 1. 透過三維列印輔助教學與透過智高積木輔助教學對於學生的科技創造力沒有顯著的差異,但是建模的過程與三維列印可以反覆印製的功能讓學生具備良好的觀察環境並能不斷嘗試錯誤,整合出更具獨創且有價值的作品,展現出學生產品科技創造性的變通力、敏覺力與精進力。 2. 三維列印輔助生活科技學習對學生的科技興趣與學習階層產生良好的態度並且對學生動手實作、工具的使用、創造的歷程及自身的問題解決能力顯示較高的自我效能。 3. 結合設計思考的過程引導學生透過三維列印進行實踐學習對學生科技產品的創造是有幫助的,而齒輪模擬軟體的建模及三維列印反覆印製的過程中亦可以促進學生設計思考的精進與齒輪機構知識的建立,比起透過智高積木輔助教學更多了瞭解齒輪機構知識及測試並改進的機會。
In most traditional Living Technology courses, teaching materials are pre-designed and pre-prepared for use of some specific teaching contents, it falls short of providing working spaces to employ design thinking, which is a core process for developing creativity. Research on creativity and design thinking suggested that situated and hands-on experiences are essential for students fostering their creativity and design thinking skills. Exploration, problem solving, simulation, discussion, and brainstorming are some of the specific processes frequently being taken for facilitating students in achieving substantial gains on creativity and design thinking skills, and current development of computer technologies have tremendously advanced these creative working processes. For Mechanical Design, which is a unit of living technology course, 3D-pringing is among one of the computer technologies that could provide more complicated, approach-to-real creative working spaces. This study intended to study the design and development of 3D-printing-based instructional strategy for the Mechanical Design of Living Technology course, and assumed to be beneficial for student’s technological creativity. The instructional strategy was designed based on the design thinking process, which guided students to conduct creative design and production. A quasi-experiment was conducted to explore the effects of 3D-printing-faciliated gear set design. The experimental group used 3D modelling and printing to assist creative design, whereas the control group used Lego bricks. The results show that although no difference on students’ technological creativity was found, the experimental group performed significantly better on designing and producing technological artifacts in terms of flexibility, sensitivity, and ability of elaboration. Moreover, students in 3D-printing group exhibited significantly better technological attitude in terms of interest and learning, and also revealed higher self-efficacies on hands-on operation, tool utilization, creative process, and problem-solving. With iterated gear modelling/3D-pringing practices, students in the experimental group gain more on design thinking skills and technological domain knowledge, which affect the creativity of their technological artifacts. Therefore, in compare with traditional Lego bricks manipulations, guiding students employing 3D-printing-faciliated design advance more on the creativity of their technological production.

Description

Keywords

科技創造力, 3D printing, 設計思考, 動手實作, technological creativity, 3D printing, design thinking, hands-on learning

Citation

Collections

Endorsement

Review

Supplemented By

Referenced By