學位論文
Permanent URI for this collectionhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/73890
Browse
2 results
Search Results
Item 應用於5G行動通訊之38GHz混頻器設計(2020) 劉文弘; Liu, Wen-Hung本論文研究內容為實現兩顆應用於第五代行動通訊系統之升頻混頻器,皆使用TSMC 65nm CMOS製程,設計頻段皆為38 GHz,此為第五代行動通訊極有可能在未來開放的頻段之一,第二章會大致介紹混頻器的主要參數和設計時的參考公式,第三章與第四章分別針對兩顆混頻器做製作過程的描述與特性分析。 第一顆晶片整體面積為0.58 mm × 0.57 mm,使用Fundamental架構並加上LO端線性提升技術(Local Oscillator boosting linearization technique)來研究其功效,中心頻率為38 GHz,在LO驅動功率9 dBm與0.5 V的閘極偏壓下,轉換增益(Conversion Gain)為-8.4 dB,OP1dB(Output Power 1 dB compression point)為-1.5 dBm,在RF(Radio frequency)頻率31-41 GHz間,當LO輸入功率為6 dBm時,轉換增益範圍為-10.4 dB到-11.3 dB間,直流功耗為0 mW。 第二顆晶片整體面積為0.82 mm × 0.52 mm,使用Sub-Harmonic架構並加上LO端線性提升技術來研究其功效,中心頻率為38 GHz,在LO驅動功率10 dBm與0.0 V的閘極偏壓和0.25 V的可變電容偏壓下,轉換增益為-10.4 dB,OP1dB為-9.3 dBm,在RF頻率29-40 GHz間,當LO輸入功率為10 dBm時,轉換增益範圍為-10.5 dB到-10.1 dB,直流功耗為0 mW。Item X頻帶接收器前端電路與E頻帶低雜訊放大器設計與實現(2014) 張瑞安; Ruei-An Chang本論文主要針對X頻帶衛星通訊與E頻帶無線通訊之訊射頻前端電路的設計與實現,包含低雜訊放大器與混頻器,晶片製作透過國家晶片中心提供的標準TSMC CMOS 90 nm與180 nm製程,內容分為三個部分,第一個部分為介紹X頻帶與E頻帶的研究背景,第二部分為所有電路設計、模擬與量測,第三部分為結論。 本論文將介紹三個電路,依序為X頻帶低雜訊放大器、E頻帶低雜訊放大器、X頻帶混頻器,分別在第二章、第三章與第四章。第二章實現了X頻帶低雜訊放大器,使用兩級共源極組態串接的方式,並採用變壓器匹配的方式能在低功率消耗、低雜訊與小面積下維持不錯的增益表現,量測在11 GHz下有小訊號增益13.4 dB,雜訊指數3.41 dB。在供應電壓1.0 V下整體功率消耗為4.8mW。晶片面積為0.44 〖mm〗^2。 第三章實現了E頻帶低雜訊放大器,採用三級串接組態的架構,第一級為共源極組態,第二級與第三級都是採用疊接組態,並且延續前一章節所使用的變壓器匹配方式減少晶片使用的面積,量測結果最大訊號增益在67 GHz有21 dB,雜訊指數在67.5 GHz為8.8 dB,在共源極組態與疊接組態供應電壓分別為1.2 V與2.4 V下的整體功率消耗為15.84 mW。晶片面積為0.338 〖mm〗^2。 第四章實現了X頻帶環形混頻器,採用弱反轉區的偏壓方式,混頻器可以操作在低LO功率以及低直流功率消耗,並在輸出IF端使用轉阻緩衝放大器提供足夠的轉換增益,量測轉換增益為0.5 ± 1.5 dB在9 ~ 15 GHz。LO驅動功率為-12 ~ -5 dBm,整體供應電壓為1.0 V,功率消耗為2 mW。晶片面積為0.295 〖mm〗^2。