學位論文
Permanent URI for this collectionhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/73890
Browse
5 results
Search Results
Item 應用於 X 頻段之鎖相迴路與頻率合成器之設計與實現(2012) 施宏達隨著通訊產業發展蓬勃,在講求高資料傳輸速率的時代,許多應用已經都被發展到高頻段上,然而在這些高頻段應用的通訊系統皆需要一個穩定且純淨的振盪源,因此,鎖相迴路扮演了一個關鍵的角色。本論文使用了TSMC CMOS 0.18-µm 製程實現可操作在 X 頻段上的鎖相迴路與頻率合成器。在這次設計的過程中,我們使用電流再利用技術與變壓器回授型態的壓控振盪器來達到節省功耗之效果。 本論文依序實現了壓控振盪器、除頻器、鎖相迴路與頻率合成器,分別在第三章、第四章、第五章與第六章呈現。四個電路主要都是設計在 X 頻段上。第五章設計了一個操作在 X 頻段上的鎖相迴路,整體的功率消耗約為 38 mW,其相位雜訊為-94 dBc/Hz @ 1 MHz。在第六章整合了第三章、第四章與第五章實現出了一個低電壓且操作在 X 頻段上的頻率合成器,並且具有一組 2bits 的控制線,可切換三個頻道,其功率消耗為 36.76 mW。相位雜訊在 In-band 為-75 dBc/Hz @ 100 kHz 且在 out-band 為-120 dBc/Hz @ 10 MHz。Item X頻帶接收器前端電路與E頻帶低雜訊放大器設計與實現(2014) 張瑞安; Ruei-An Chang本論文主要針對X頻帶衛星通訊與E頻帶無線通訊之訊射頻前端電路的設計與實現,包含低雜訊放大器與混頻器,晶片製作透過國家晶片中心提供的標準TSMC CMOS 90 nm與180 nm製程,內容分為三個部分,第一個部分為介紹X頻帶與E頻帶的研究背景,第二部分為所有電路設計、模擬與量測,第三部分為結論。 本論文將介紹三個電路,依序為X頻帶低雜訊放大器、E頻帶低雜訊放大器、X頻帶混頻器,分別在第二章、第三章與第四章。第二章實現了X頻帶低雜訊放大器,使用兩級共源極組態串接的方式,並採用變壓器匹配的方式能在低功率消耗、低雜訊與小面積下維持不錯的增益表現,量測在11 GHz下有小訊號增益13.4 dB,雜訊指數3.41 dB。在供應電壓1.0 V下整體功率消耗為4.8mW。晶片面積為0.44 〖mm〗^2。 第三章實現了E頻帶低雜訊放大器,採用三級串接組態的架構,第一級為共源極組態,第二級與第三級都是採用疊接組態,並且延續前一章節所使用的變壓器匹配方式減少晶片使用的面積,量測結果最大訊號增益在67 GHz有21 dB,雜訊指數在67.5 GHz為8.8 dB,在共源極組態與疊接組態供應電壓分別為1.2 V與2.4 V下的整體功率消耗為15.84 mW。晶片面積為0.338 〖mm〗^2。 第四章實現了X頻帶環形混頻器,採用弱反轉區的偏壓方式,混頻器可以操作在低LO功率以及低直流功率消耗,並在輸出IF端使用轉阻緩衝放大器提供足夠的轉換增益,量測轉換增益為0.5 ± 1.5 dB在9 ~ 15 GHz。LO驅動功率為-12 ~ -5 dBm,整體供應電壓為1.0 V,功率消耗為2 mW。晶片面積為0.295 〖mm〗^2。Item 使用0.18-μm互補式金氧半製程之鎖相迴路與頻率合成器之設計與實現(2014) 黃紹緯; Shao-Wei Huang對於各類通訊系統而言,隨著操作頻率越來越高,鎖相迴路也在其扮演著越來越重要的角色,而為了適應不同通訊系統規格的應用,鎖相迴路所要求的電路規格也有所不同,但還是會以低功耗與低相位雜訊為主要目標,只是這些目標還有許多問題需要克服,因此如何在各種電路特性上做取捨是最重要的議題。 在第四章實現了應用於5 GHz的鎖相迴路,其使用變壓器回授的壓控振盪器與高速的TSPC除頻器,讓鎖相迴路能達成低功耗與降低相位雜訊的目標。此外我們在振盪器中增置一組變容器來提高電路的調變範圍,而量測的相位雜訊在正常偏壓下,載波偏移100 kHz處為-88.15 dBc/Hz;在載波偏移10 MHz處為-117.89 dBc/Hz,整體功率消耗為26.5 mW,若在低偏壓下,載波偏移100 kHz處為-90.88 dBc/Hz;在載波偏移10 MHz處為-115.8 dBc/Hz,整體功率消耗為12.12 mW,操作範圍為4.33~5.1 GHz。 第五章實現了應用於X頻段的頻率合成器,其使用交叉耦合對的LC振盪器架構、電流模式邏輯除頻器與多模除頻器,來達成降低相位雜訊的目標。並且我們在LC振盪器中增置一組電容來提高共振腔中的品質因素,以提高電路相位雜訊的表現,此外在預除電路的部分的,我們將電流模式邏輯除頻器的尾電流源部分刪除以增加其操作速度。量測的相位雜訊在正常偏壓下,載波偏移100 kHz處為-67.28 dBc/Hz;載波偏移10 MHz處為-119.3 dBc/Hz,整體功率消耗30.26 mW,若在低偏壓下,載波偏移100 kHz處為-67.28 dBc/Hz;載波偏移10 MHz處為-119.3 dBc/Hz,整體功率消耗17.01 mW,操作範圍為10.43~10.77 GHz。Item 應用於X頻帶9.75/10.6 GHz頻率合成器之設計與實現(2014) 趙家祥; Chia-Hsiang Chao在數位傳播衛星(DBS)的規範下,操作在Ku頻帶10.7~12.75GHz的低雜訊模塊降頻器是衛星電視訊號接收鏈中一個重要的部份。因為低雜訊模塊降頻器必需將Ku-Band的RF訊號降頻至L-Band的IF訊號(0.95~2.15GHz)。因此在低雜訊模塊降頻器的設計上,需要一個X頻帶頻率合成器來提供9.75GHz及10.6GHz的振盪源訊號。本論文使用了TSMC CMOS 0.18-µm製程實現了X頻段9.75/10.6GHz頻率合成器。 本論文依序實現了多模除頻器、X頻帶頻率合成器前端電路以及X頻帶9.75/10.6GHz頻率合成器,分別在第三章、第四章及第五章呈現。在第三章實現出了一個七位元多模除頻器,其除數從128~255,在直流偏壓1.5V下最高可操作在3.3GHz,功率消耗為5.85mW。在第四章實現了X頻帶頻率合成器前端電路,包含電壓控制振盪器及除四預除頻器電路兩個部份。電壓控制振盪器部份採用交叉耦合對的方式,同時利用一個開關電路來實現9.75/10.6 GHz頻段切換的功能。其功率消耗為10.5mW。高頻頻段相位雜訊在載波偏移1MHz處-102.95dBc/Hz;低頻頻段相位雜訊在載波偏移1MHz處為-92.199dBc/Hz。預除頻電路部分採用電流模式邏輯式的除頻器架構。同時,刪除了CML的尾電流部分來增加速度。其功率消耗為14.5mW。在第五章實現了X頻帶9.75/10.6GHz頻率合成器。輸出頻率為9.75GHz時,相位雜訊在載波偏移100KHz處為-66.11 dBc/Hz;在載波偏移1MHz處為-89.85 dBc/Hz。輸出頻率為10.6GHz時,相位雜訊在載波偏移100KHz處為-66.77 dBC/Hz;在載波偏移1MHz處為-90.55 dBC/Hz。其功率消耗為34.5mW。Item X頻帶互補式金氧半功率放大器設計與實現(2015) 黃望龍; Huang, Wang-Lung對於射頻收發器系統來說,功率放大器扮演著相當重要的角色,為了達到高輸出功率與高效率,現今,功率放大器的設計以砷化鎵製程(GaAs process)為主。近年來隨著CMOS的進步,射頻電路大部份已經成功整合至CMOS 製程當中,且CMOS具有低功率消耗、低成本、高整合度的優勢,因此本論文將設計及實現三個使用不同功率合成技術的X頻帶互補式金氧半功率放大器。 第一個電路為變壓器功率合成技術之X頻段功率放大器,藉由變壓器實現功率合成而達到較高的輸出功率,量測增益("S" _"21" )為14.189 dB,飽和輸出功率("P" _"sat" )為24.74 dBm,1dB增益壓縮輸出功率(〖"OP" 〗_"1dB" )為16.63 dBm,最高功率附加效率(PAE)為19.9 %,晶片佈局面積為0.56 mm^2。 第二個電路為串聯結合變壓器功率合成技術之X頻段功率放大器,藉由堆疊每一功率元件的電壓,進而抬高整體的輸出電壓及功率,量測增益("S" _"21" )為13.08 dB,飽和輸出功率("P" _"sat" )為26.3 dBm,1dB增益壓縮輸出功率(〖"OP" 〗_"1dB" )為23.3 dBm,最高功率附加效率(PAE)為12.6 %,晶片佈局面積為1.08 mm^2,。 第三個電路為基於變壓器的電流合成技術之X頻段功率放大器,將兩組功率放大器元件直接並聯,藉此提高輸出功率,量測增益("S" _"21" )為13.4 dB,並達到27.3 dBm的飽和輸出功率("P" _"sat" ),23.84 dBm的1dB增益壓縮輸出功率(〖"OP" 〗_"1dB" )及19 %的最高功率附加效率(PAE) ,晶片佈局面積為1.27 mm^2。